
NWN2 Toolset Guide
Volume III ‒ Scripting Appendices

Edition 6.1
If you find any corrections or have suggestions, edits and

additions that would improve this document, I would enjoy
hearing from you. Please send me a friendly e-mail. Thank
you for taking the time to look through this work, and I

hope you find it of some use.

—Bob Hall
September 1, 2013

Table of Contents
System Functions...2

Actions..2
Combat..6
Creatures... 9
Effects... 17
Environment... 31
Events and Scripts...34
Factions...37
Game Management...41
Geometry.. 44
Interaction... 46
Interface.. 52
Inventory...57

Item Properties..61
Layout... 69
Objects.. 72
Obstacles...76
Talents...80
Time..83
Variables... 85

Arrays.. 88
Action Scripts.. 90
Condition Scripts... 108
Include Files.. 115
Function Index...117

1

mailto:rjh405@gmail.com?Subject=NWN2 Toolset Notes

System Functions.

System Functions.
These are the built-in function calls that can be used in

scripts without the need for an include file. For
convenience, they have been organized into groups of
common functionality, then listed in alphabetic order within
each group. The complete library of functions is listed in the
Script Assist panel of the script editor. In some cases
questions or comments have been added in italics to
indicate information that is unclear.1

Many of the arguments passed to these functions (or
returned by the functions) are in the form of global
constants, as listed under the Globals tab of the Script Assist
panel. These are indicated by upper case names, such as
'ACTION_REST'. Where there are multiple such constants,
a prefix is listed followed by an ellipsis. For example,
ACTION_.... Some functions are used in pairs to iterate
through a list of matching structure types: the GetFirst...()
and GetNext...() style routines.

Actions

These calls are used to generate action states. By default,
an action is assigned to the calling object. However, they
can also be assigned to a different object, such as a creature,
by passing the action command as an argument to an
ActionDoCommand, AssignCommand or DelayCommand
call. (See the Commands section.) Actions are also passed
to some effect commands, such as EffectDispelMagicAll or
EffectOnDispel. See the "ginc_wp" include file for
examples of assigning actions to creatures.

1 More information on the following calls is needed than is
provided in the function notes:

• GetBicFileName

• GetPlaceableIllumination

• GetSelectedMapPointTag

• LoadGlobalVariables

• PlayVoiceChat

• SaveGlobalVariables

• SetPlaceableIllumination

void ActionRest(
int bIgnoreNoRestFlag = 0)

This action will cause the creature to rest unless the area
properties has the 'No Resting Allowed' property set to
false. If bIgnoreNoRestFlag is set to true, the creature will
rest regardless of the area properties, even if there are
hostile creatures nearby. However, the creature will not rest
if it is in combat.
void ActionWait(float fSeconds)

This will cause the subject to remain inactive for fSeconds
seconds. The ActionWait command can be useful for
adding an activity pause when the subject is performing
fire-and-forget animations. These actions normally have an
animation identifier larger than 100, although the
ANIMATION_LOOPING_LISTEN animation also requires
a wait.

Conversation

void ActionPauseConversation()
This pauses the current conversation. The conversation

will be resumed when ActionResumeConversation is called.
void ActionPauseCutscene(

int nTimeout,
int bPurgeOnTimeout = FALSE)

This action pauses the current conversation cutscene. The
nTimeout is the number of milliseconds before the cutscene
automatically resumes, which also causes the pending
cutscene actions to clear. If nPurgeOnTimeout is true, all
pending cutscene actions are cleared.

This differs from ActionPauseConversation in that the
conversation will resume once a cutscene action has been
assigned, if there are no cutscene actions currently pending.
Thus a call to ActionResumeConversation is unnecessary.
void ActionResumeConversation()

This will resume a conversation that was paused by a call
to ActionPauseConversation.

2

Actions

void ActionSpeakString(
string sStringToSpeak,
int nVolume = TALKVOLUME_TALK)

The creature will speak the string sStringToSpeak at the
volume nVolume. Valid values for the volume are defined
by the TALKVOLUME_... constants.
void ActionSpeakStringByStrRef(

int nStrRef,
int nVolume = TALKVOLUME_TALK)

This will look up a string by reference nStrRef from the
talk table then speak it as per ActionSpeakString at the
volume nVolume. Valid values for the volume are defined
by the TALKVOLUME_... constants.
void ActionStartConversation(

object oObjectToConverseWith,
string sDialogResRef = “”,
int bPrivateConversation = FALSE,
int bPlayHello = TRUE,
int bIgnoreStartDistance = FALSE,
int bDisableCutsceneBars = FALSE)

Initiate a conversation with oObjectToConverseWith. This
defaults to the creature's own conversation unless
sDialogResRef is not empty and matches a conversation
resource reference. If bPlayHello is false, the creature's
greeting will not be played.

Interact

action ActionAttack(
object oAttackee,
int bPassive = FALSE)

This call causes the action subject to attack oAttackee. If
bPassive is true, the attack is in passive mode. This means
the subject will not move to attack oAtackee with a melee
weapon.
void ActionCloseDoor(

object oDoor)
The action subject closes the door object oDoor. See also

ActionOpenDoor.
void ActionExamine(object oExamine)

This causes the creature to examine the object oExamine.
When the action is assigned to the player's character, this
will cause the Examination window to appear.

void ActionInteractObject(
object oPlaceable)

This command will cause the subject to interact with the
placeable oPlaceable. The net effect is that the subject runs
up to the object and then stops.
void ActionLockObject(object oTarget)

If oTarget is a door or container, the subject will lock it.
void ActionOpenDoor(

object oDoor)
The action subject opens the door object oDoor. See also

ActionCloseDoor.
void ActionSit(object oChair)

If a creature is capable of sitting, it should seat itself in the
chair oChair. Unfortunately this function does not work
properly, so the target of this action will not sit down for
more than a fraction of a second. What you can use instead
is a set of custom looping animation files in combination
with the PlayCustomAnimation call. These animation files
are:
• "sitdrink"
• "sitdrinkidle"
• "sitfidget"
• "sitidle"
• "sittalk01"
• "sittalk02"

void ActionUnlockObject(
object oTarget)

If oTarget is a door or a placeable container, the subject
will unlock it.

Movement
void ActionPlayAnimation(

int nAnimation,
float fSpeed = 1.0,
float fDuration = 0.0)

This will cause the subject to move their body according
to the animation nAnimation. Valid animations are specified
by the ANIMATION_... constants, which are subdivided
into fire-and-forget and looping-type animations. The speed
of the animation is multiplied by fSpeed, and the duration of
a looping animation is fDuration seconds. The fire-and-
forget animations ignore the fDuration parameter.

3

Actions

Note that the PC races have most of the animations
implemented, but not all creatures will perform all
animations. The Wolf, for example, will only run the
collapse, dodge duck, dodge side, standup and taunt fire-
and-forget animations, as well as dead-back and dead-front
looping animations.

The ANIMATION_LOOPING_SIT_CHAIR animation
will only produce a brief crouching motion, rather than a
seated position.
void ActionForceFollowObject(

object oFollow,
float fFollowDistance = 0.5f,
int iFollowPosition = 0)

When this action is activated, the subject will follow the
creature oFollow until ClearAllActions() is executed. (See
Commands.) The fFollowDistance is the distance to follow
in meters, which defaults to 0.5f if less than 0.5f. The
command notes indicate iFollowPosition is an offset
position to run to behind the creature being followed, but I
haven't noticed any effect from how this is set.
void ActionForceMoveToLocation(

location locDestination,
int bRun = FALSE,
float fTimeout = 30.0f)

The subject walks to the location locDestination. If bRun
is true, the subject will run instead. Note that if the path to
the location is blocked, the subject may do nothing. You
can address this by adding a DelayCommand of an
ActionJump that occurs after the fTimeout period.
void ActionForceMoveToLocation(

object oDestination,
int bRun = FALSE,
float fRange = 1.0f,
float fTimeout = 30.0f)

The subject walks toward the object oDestination until it
comes within fRange distance. If bRun is true, the subject
will run instead. Note that if the path to the object is
blocked, the subject may do nothing.
void ActionJumpToLocation(

location locJumpTo)
The subject is instantly moved to the location locJumpTo,

even if the location is in another area. This can be a bit

jarring, so it is better used out of the player's sight.
void ActionJumpToObject(

object oJumpTo,
int bWalkStraightLine = TRUE)

The subject is instantly moved adjacent to the object
oJumpTo. It is unclear what bWalkStraightLine is used for
or why it is needed.
void ActionMoveAwayFromLocation(

location locMoveAwayFrom,
int bRun = FALSE,
float fMoveAwayRange = 40.0f)

This command will cause the subject to move as far as
possible away from the location locMoveAwayFrom, until a
distance of fMoveAwayRange has been reached. The subject
will stop once no further separation can be attained. If bRun
is true, the subject will run.
void ActionMoveAwayFromObject(

object oMoveAwayFrom,
int bRun = FALSE,
float fMoveAwayRange = 40.0f)

This command will cause the subject to move as far as
possible away from the object oMoveAwayFrom, until a
distance of fMoveAwayRange has been reached. This works
even if there is no clear path between the subject and the
object. The subject will stop once no further separation can
be attained. If bRun is true, the subject will run.
void ActionRandomWalk()

This is a persistent action that causes the subject to
generate a nearby random location, find a path there and
move to it, then repeat. The ClearAllActions action must be
called before any other actions will be executed.

Talents

action ActionCastFakeSpellAtLocation(
int nSpell,
location locTarget,
int nProjectilePathType =
 PROJECTILE_PATH_TYPE DEFAULT)

The subject produces the conjuration and cast animations
for the spell nSpell cast at location locTarget with projectile
path type nProjectilePath. However, there is no other effect.
The spell ID is one of the SPELL_... constants.

4

Actions

action ActionCastFakeSpellAtObject(
int nSpell,
object oTarget,
int nProjectilePathType =
 PROJECTILE_PATH_TYPE DEFAULT)

This is similar to ActionCastFakeSpellAtLocation, except
the target is the object oTarget.
action ActionCastSpellAtLocation(

int nSpell,
int locTarget,
int nMetamagic = METAMAGIC_ANY,
int bCheat = FALSE,
int nProjectilePathType =
 PROJECTILE_PATH_TYPE DEFAULT,
int bInstantSpell = FALSE)

This subroutine causes the spell nSpell to be cast at
location locTarget. The spell type, nSpell, is given by one of
the SPELL_... global constants. The nMetaMagic parameter
is set to a METAMAGIC_... global constant value. Use -1
for METAMAGIC_ANY or 0 for METAMAGIC_NONE.
If bCheat is true, then the caster does not necessarily need
to be able to cast the spell. The nDomainLevel parameter
defines the caster level. The nProjectilePathType parameter
is set to one of the PROJECTILE_ PATH_TYPE_... global
constants, or to PROJECTILE_ PATH_TYPE_DEFAULT
if the value is zero. If bInstantSpell is true, cast the spell
immediately.
action ActionCastSpellAtObject(

int nSpell,
int locTarget,
int nMetamagic = METAMAGIC_ANY,
int bCheat = FALSE,
int nDomainLevel,
int nProjectilePathType =
 PROJECTILE_PATH_TYPE DEFAULT,
int bInstantSpell = FALSE)

This call functions like ActionCastSpellAtLocation,
except that the target is the object oTarget. The
nDomainLevel parameter is undefined. This function is
called by the ga_cast_spell_at_object script.
void ActionCounterSpell(object oCSTarget)

This causes the action subject to counter-spell the target
oCSTarget. That is, the subject will attempt to use a spell to

negate a matching spell being cast by the target. In order for
this to succeed, the subject must be able to cast the spell
being countered, must have the spell prepared, and must
recognize the spell using a spellcraft skill check. This
counts as a ready action, and it is activated at the start of the
opponent's round. Any actions assigned to the creature
following this command will negate the counterspell action.
void ActionUseFeat(

int nFeat,
object oTarget)

The subject uses the feat nFeat on the target oTarget. The
feat is one of the FEAT... global constants. Feats in NWN2
can include class special abilities. See the Feats section.
int ActionUseSkill(

int nSkill,
object oTarget,
int nSubSkill = 0,
object oItemUsed =

OBJECT_INVALID)
The subject will use the skill nSkill on the target oTarget.

Valid values of nSkill are SKILL_.... The possible values of
nSubSkill are SUBSKILL_...TRAP, which apply to the
disable trap skill. The oItemUsed can be passed an item
object for use with the skill, such as a healer's kit for the
healing skill. This routine returns true if the action was
queued successfully.
void ActionUseTalentAtLocation(

talent tChosenTalent,
location locTarget)

The subject uses the talent tChosenTalent at the location
locTalent. Talents can be feats, skills or spells.
void ActionUseTalentOnObject(

talent tChosenTalent,
object oTarget)

The subject will use the talent tChosenTalent on the target
oTarget.

5

Combat

Combat

See also GetActionMode, GetLastAttacker, GetLastKiller
and the Encounter section.
void ClearCombatOverrides(

object oCreature)
This routine will clear any combat overrides that were

established with the SetCombatOverrides call on the
creature oCreature.
void DoWhirlwindAttack(

int bDisplayFeedback = TRUE,
int bImproved = TRUE)

The calling object performs a whirlwind attack against all
enemies within a 10 ft. radius. If bDisplayFeedback is true,
then feedback is printed in the chat window. If bImproved is
true, the attack uses the improved version of a whirlwind
attack.

This call is used solely in the spell script for the whirlwind
attack. If you want to queue up a whirlwind attack action,
the notes state you should use the ActionUseFeat action
routine with the FEAT_WHIRLWIND_ATTACK.
object GetAttackTarget(

object oCreature = OBJECT_SELF)
This function returns the object currently being attacked

by the creature oCreature. If the creature is not in combat,
this will return an invalid object.
object GetAttemptedAttackTarget()

Each combatant tracks the target of each attack, and this
routine will return the object that was attacked. When the
caller is not in combat, this will return an invalid object.
object GetAttemptedSpellTarget()

Each combatant tracks the target of each spell, and this
routine will return the object that was targeted. When the
caller is not in combat, this will return an invalid object.
int GetBaseAttackBonus(object oCreature)

This routine returns the current base attack bonus of the
creature oCreature. See GetTRUEBaseAttackBonus.
int GetCurrentHitPoints(

object oObject = OBJECT_SELF)
Fetch the current number of hit points for the object

oObject. See GetMaxHitPoints.

int GetDamageDealtByType(
int nDamageType)

This determines the amount of hit point damage of type
nDamageType that has been dealt to the object calling this
routine. The type is a DAMAGE_TYPE_... constant, which
includes acid, bludgeoning, divine, and so forth.
object GetGoingToBeAttackedBy(

object oTarget)
This specialized routine is intended for a henchman to

process a “going to be attacked” shout from its master. It
returns the object that is going to attack the target oTarget.
This returns an invalid object if oTarget is not a valid
creature or if combat has ended.
int GetIsCreatureDisarmable(

object oCreature)
This returns true if the creature oCreature has the

Disarmable property set to true. This would allow the use of
a disarm action against the creature. (Unfortunately, most of
the default blueprints for weapon-wielding creatures have
this set to false.)
int GetIsInCombat(

object oCreature = OBJECT_SELF)
If the creature oCreature is currently engaged in combat,

this will return true.
int GetIsWeaponEffective(

object oVersus = OBJECT_INVALID,
int bOffHand = FALSE)

This returns true if the weapon equipped by the calling
object is capable of inflicting damage against oVersus. If
bOffHand is true, this will check the weapon in the off-hand
slot instead.
int GetLastAttackMode(

object oCreature = OBJECT_SELF)
This call returns the attack mode of the last attack by

creature oCreature. The result is a COMBAT_MODE_...
constant. If the creature is not in combat, this will return an
invalid mode.
int GetLastAttackType(

object oCreature = OBJECT_SELF)
When the object oCreature is in combat, this will return

the type of the object's last attack. This is a global constant
of the form SPECIAL_ATTACK_....

6

Combat

object GetLastDamager(
object oObject = OBJECT_SELF)

This returns the last object that inflicted damage upon
oObject.
object GetLastHostileActor(

object oVictim = OBJECT_SELF)
This call returns the last object that committed a 'hostile'

act against oVictim. This is the last object that was stored as
a return value for GetLastAttacker, GetLastDamager,
GetLastSpellCaster (when GetLastSpellHarmful was true),
or GetLastDisturbed (as the result of a pick pocket attempt).
object GetLastWeaponUsed(

object oCreature)
This returns the weapon that the creature oCreature used

in an attack.
object GetPlayerCurrentTarget(

object oCreature)
For a valid, player-controlled creature oCreature, this will

return the object that the player currently has selected as the
target of the PC.
float GetProjectileTravelTime(

location locSource,
location locTarget,
int nProjectilePathType,
int nSpellID = -1)

This will return the time in seconds for a projectile to
travel from locSource to locTarget. The projectile path type
nProjectilePathType is a PROJECTILE_PATH_TYPE_...
constant. If PROJECTILE_PATH_TYPE_SPELL is given
and nSpellID is a valid spell identifier, SPELL_..., this
routine will retrieve the spell's projectile path type from the
'spell.2da' file.
int GetTotalDamageDealt()

This returns the total hit points of damage that have been
dealt to the object calling this routine.
int GetTRUEBaseAttackBonus(object oTarget)

This returns the base attack bonus of the object oTarget
before any modifiers are applied.
void RestoreBaseAttackBonus(

object oCreature = OBJECT_SELF)
This will restore the base attack bonus to its original level,

thereby also restoring the number of attacks.

void SetCombatOverrides(
object oCreature,
object oTarget,
int nOnHandAttacks,
int nOffHandAttacks,
int nMinDamage,
int nMaxDamage,
int bSuppressBroadcastAOO,
int bSuppressMakeAOO,
int bIgnoreTargetReaction,
int bSuppressFeedbackText)

This routine is normally used during a cutscene combat
round to cause a specific result by applying overrides on the
creature oCreature attacking the object oTarget. The target
can be invalid, in which case normal target selection will
occur. The nAttackResult is a global constant of the form
OVERRIDE_ATTACK_RESULT_..., that forces the attack
outcome.

• The nOnHandAttacks and nOffHandAttacks sets the
number of attacks per round. Setting these to -1 will
use the default attacks for the round. Setting the total
to a value between one and six (with each 0 to 6) will
force that many attacks.

• The nMinDamage and nMaxDamage sets the random
damage range, or set them to -1 for the default.

• If bSuppressBroadcastAOO is true, the creature may
may cause an attack of opportunity from nearby
creatures.

• If bSuppressMakeAOO is true, the creature will make
attacks of opportunity when the circumstances allow.

• If bIgnoreTargetReaction is true, ActionAttack calls
on hostile creatures are not rejected.

• If bSuppressFeedbackText is true, the creature's
combat feedback will not be displayed.

void SpawnBloodHit(
object oCreature,
int bCriticalHit,
object oAttacker)

This creates a visual effect that simulates blood emission
from a combat hit. The blood will be of the type from the
creature oCreature. If bCriticalHit, the blood will be from a
critical hit, rather than a normal hit. The trajectory of the

7

Combat

particles is determined by the placement of the attacker
oAttacker.
void SpawnItemProjectile(

object oSource,
object oTarget,
location locSource,
location locTarget,
int nBaseItemID,
int nProjectilePathType,
int nAttackType,
int nDamageTypeFlag)

This creates the visual effect for a projectile. The source of
the projectile oSource is at the location locSource. The
target of the projectile oTarget is at location locTarget. The
type of launcher nBaseItemID is a row in the 'baseitems.2da'
file, which uses the AmmunitionType column to get the
ammo type. (These match the BASE_ITEM_... constants.)

The nProjectilePathType is a global constant of the form
PROJECTILE_PATH_TYPE_... that determines the path
type of the projectile. The nAttackType parameter is a
constant OVERRIDE_ATTACK_RESULT_... that is based
on the attack result. The nDamageTypeFlag can be used to
add a effect DAMAGE_TYPE_... that can be acid, cold,
electrical, fire, divine or sonic.
int TouchAttackMelee(

object oTarget,
int bDisplayFeedback = TRUE,
int nBonus = 0)

The object calling this routine performs a touch melee
attack on the target oTarget with a bonus nBonus to the
attack roll. (This does not check whether the attacker is in
range of the target.) It returns a global constant
TOUCH_ATTACK_RESULT_... that gives the result of the
attack. The result is printed to the player's chat window if
the bDisplayFeedback parameter is true.
int TouchAttackRanged(

object oTarget,
int bDisplayFeedback = TRUE,
int nBonus = 0)

The object calling this routine performs a ranged touch
attack on the target oTarget with a bonus nBonus to the
attack roll. It returns a TOUCH_ATTACK_RESULT_...
constant that gives the result of the attack. If the

bDisplayFeedback parameter is true, the result is printed to
the player's chat window.

Encounter

These routines apply to encounter trigger areas. See also
the Combat section.
int GetEncounterActive(

object oEncounter = OBJECT_SELF)
If oEncounter is a valid encounter object, this will return

true of the encounter's Active property is set to true.
int GetEncounterDifficulty(

object oEncounter = OBJECT_SELF)
If oEncounter is a valid encounter, this will return the

difficulty level of the encounter as a global constant of the
type ENCOUNTER_DIFFICULTY_.... The available types
are very easy, easy, normal, hard and impossible.
int GetEncounterSpawnsCurrent(

object oEncounter = OBJECT_SELF)
This will return the number of times that the encounter

oEncounter has spawned. See GetEncounterSpawnsMax.
int GetEncounterSpawnsMax(

object oEncounter = OBJECT_SELF)
This will return the maximum number of times that the

encounter oEncounter can spawn.
int GetIsEncounterCreature(

object oEncounter = OBJECT_SELF)
For a valid creature oCreature, this will return true if the

creature was spawned by an encounter.
void SetEncounterActive(

int bNewValue,
object oEncounter = OBJECT_SELF)

This routine will control whether the encounter object
oEncounter is active or note, based on the value of
bNewValue.
void SetEncounterDifficulty(

int nEncounterDifficulty,
object oEncounter = OBJECT_SELF)

This call will set the difficulty ranking of the encounter
oEncounter to nEncounterDifficulty, which is a global
constant ENCOUNTER_DIFFICULTY_....

8

Combat

void SetEncounterSpawnsCurrent(
int nNewValue,
object oEncounter = OBJECT_SELF)

This will override the value that tracks the number of
times that the encounter oEncounter has been triggered, and
set it to nNewValue.
void SetEncounterSpawnsMax(

int nNewValue,
object oEncounter = OBJECT_SELF)

This will change the maximum the number of times that
the encounter oEncounter will spawn to nNewValue.
void TriggerEncounter(

object oEncounter,
object oPlayer,
int nCRFlag,
float fCR)

This will cause the encounter oEncounter to be triggered
by player oPlayer. The nCRFlag parameter is not
implemented. The value of fCR will set the challenge rating
of the encounter. A value of -1.0 will cause the function to
compute the challenge rating based on nearby players.

Creatures

See also the Commands and Interaction sections.
string RandomName()

This generates a random character name.

Management

See also SetSoundSet.
void ForceRest(object oCreature)

The creature oCreature is forced to rest, thereby restoring
it's hit points and spells, resetting it's feats, and so forth.
void GiveGoldToCreature(

object oCreature,
int nGP,
int bDisplayFeedback = TRUE)

This call gives nGP gold pieces to the creature oCreature.
If bDisplayFeedback is true, this will display feedback in
the player's chat window.
void SetAILevel(

object oTarget,
int nAILevel)

This call will set the artificial intelligence level of an NPC
oTarget to nAILevel, which is a AI_LEVEL_... constant.
See GetAILevel.
void SetCreatureAppearanceType(

object oCreature,
int nAppearanceType)

This changes the appearance of the creature to oCreature
to the type nAppearanceType, which can be any of the
global constants APPEARANCE_TYPE_....
void SetDeity(

object oCreature,
string sDeity)

This sets the deity of the creature oCreature to the name
sDeity. The deities used in the NWN2 campaign are listed
in the 'nwn2_deities.2da' file.
void SetIsDestroyable(

int bDestroyable,
int bRaisable = TRUE,
int bSelectableWhenDead = FALSE)

This call sets a flag that determines whether the calling

9

Creatures

object (OBJECT_SELF) is destroyed when slain. If the
bDestroyable flag is false, then the corpse will remain
behind after the caller is slain. Otherwise it will fade away.

If bRaisable is true, then the caller can be brought back to
life via resurrection. If bSelectableWhenDead is true, then
the caller is selectable when dead, allowing the description
to be viewed by a player and so forth.
void SetImmortal(

object oCreature,
int bImmortal)

This will set the Immortal property on the creature
oCreature to the boolean bImmortal. When a creature is
immortal, it can be damaged but not slain. See GetImmortal
and SetPlotFlag.
void SetLootable(

object oCreature,
int bLootable)

If oCreature is a living NPC, this will set the state of the
Lootable property to the boolean bLootable.
void SetMovementRateFactor(

object oCreature,
float fFactor)

The movement factor of creature oCreature is changed to
fFactor, and applied to the creature's speed. This factor is
also modified by selected effects and encumbrance.
void SetSubRace(

object oCreature,
string sSubRace)

This sets the name of the creature oCreature's subrace to
sSubRace.
void TakeGoldFromCreature(

int nGP,
object oCreature,
int bDisplayFeedback = TRUE)

This call removes nGP gold pieces from the creature
oCreature. The gold is destroyed. If bDisplayFeedback is
true, this will display feedback in the player's chat window.

Alignment

A character's alignment rating is measured along two
scales: good-evil and law-chaos. These are integer values

from 0 to 100, with each ALIGNMENT_... name matching

a range along the scale. (See the notes on ginc_alignment
for more details.) The alignment rating of a character can be

modified as a result of behavior within the game. The
current alignment determines how certain item properties or

spells will impact a character.
void AdjustAlignment(

object oSubject,
int nAlignment,
int nShift)

The alignment of oSubject is modified by an amount
determined by the amount nShift in the direction specified
by nAlignment. Valid values for nAlignment are the
ALIGNMENT_... constants. For LAWFUL, CHAOTIC,
GOOD or EVIL, the shift will be along a single axis in the
direction specified. For ALIGNMENT_ALL, both the
GOOD/EVIL and LAWFUL/CHAOTIC values are shifted
by nShift. If ALIGNMENT_NEUTRAL is used, then the
shift is toward true neutral.

See also the routines in the ginc_alignment include file.
int GetAlignmentGoodEvil(

object oCreature)
This call returns a value that gives the general ethical

alignment of the creature oCreature along the good-evil
axis. The result matches an ALIGNMENT_... constant, or
-1 if the creature is invalid. See GetGoodEvilValue.
int GetAlignmentLawChaos(

object oCreature)
This call returns a value that gives the general ethical

alignment of the creature oCreature along the lawful-
chaotic axis. The result matches an ALIGNMENT_...
constant, or -1 if the creature is invalid. See the
GetLawChaosValue routine.
int GetGoodEvilValue(object oAligned)

Returns a numerical value giving the current ethical
alignment of the oAligned object along the good/evil axis.
This function returns a value between 0 and 100, with 100 if
the object is at the extreme end of goodness or 0 if the
object is extremely evil.
int GetLawChaosValue(object oAligned)

Returns a numerical value giving the current ethical
alignment of the oAligned object along the law/chaos axis.
This function returns a value between 0 and 100, with 100 if

10

Creatures

the object is very lawful or 0 if the object is very chaotic.

Associates

Each creature belonging to the party of a PC has an
associate type. Each is either an animal companion,
dominated, familiar, henchman or a summoned creature.
Characters with druid or ranger classes can have animal
companions, while those with a sorcerer or wizard class can
have a familiar. These are creatures that share a special
bond with the character. See also the Factions section.
void AddHenchman(

object oMaster,
object oHenchman = OBJECT_SELF)

If oHenchman is an NPC, make character a henchman to
oMaster. If the addition would exceed the maximum
number of henchmen, there is no effect.
int GetAnimalCompanionCreatureType(

object oCreature)
If the creature oCreature has an animal companion, this

returns a
ANIMAL_COMPANION_CREATURE_TYPE_... constant
giving the type.
string GetAnimalCompanionName(

object oCreature)
If the creature oCreature has an animal companion, this

will return a string containing the name of the companion.
A null string is returned when there is no companion.
object GetAssociate(

int nAssociateType,
object oMaster = OBJECT_SELF,
int nTh = 1)

This routine will return the nTh associate of type
nAssociateType belonging to oMaster, where the associate
type is an ASSOCIATE_TYPE_... constant.
int GetAssociateType(object oAssociate)

If the creature oAssociate is an associate of another
creature, this will return an ASSOCIATE_TYPE_...
constant, or ASSOCIATE_TYPE_NONE if the creature is
not an associate.
object GetControlledCharacter(

object oCreature)
The notes for this command are unclear.

int GetFamiliarCreatureType(
object oCreature)

If the creature oCreature has a familiar, this returns a
constant FAMILIAR_CREATURE_TYPE_... giving the
type.
string GetFamiliarCompanionName(

object oCreature)
If the creature oCreature has a familiar, this will return a

string containing the name of the creature. A null string is
returned when there is no familiar.
object GetHenchman(

object oMaster = OBJECT_SELF,
int nNth = 1)

Use this routine to return the nNth henchman belonging to
oMaster. If the nNth henchman does not exist, this returns
an invalid object.
int GetIsCompanionPossessionBlocked(

object oCreature)
This call returns the state of the possession flag that is set

by SetIsCompanionPossessionBlocked, for the creature
oCreature.
int GetIsPossessedFamiliar(

object oCreature)
If the creature oCreature is a familiar that is currently

possessed by it's master, then this routine will return true.
object GetMaster(object oAssociate)

If oAssociate is an associate, this will return the object
representing the creature's master.
int GetMaxHenchmen()

This function returns the maximum number of henchmen
allowed. Henchmen are not the same as companions. See
SetMaxHenchmen.
void RemoveHenchman(

object oMaster,
object oHenchman = OBJECT_SELF)

If oHenchman is a henchman in the service of oMaster,
this will remove the henchman from the master's faction and
restore its original faction.
void RemoveSummonedAssociate(

object oMaster,
object oAssicoate = OBJECT_SELF)

This will remove the associate oAssociate from the service

11

Creatures

of the master mMaster, restoring the associate to its original
faction.
void SetIsCompanionPossessionBlocked(

object oCreature,
int bBlocked)

If the creature oCreature is not a player-owned character,
setting the boolean bBlocked to true will allow a player to
possess the creature as a companion.
object SetOwnersControlledCompanion(

object oCurrentCreature,
object oTargetCreature =
 OBJECT_INVALID)

This routine changes the creature controlled by a player
from oCurrentCreature to oTargetCreature. If the creature
oTargetCreature is not found, then the player is set to
control their original, owned creature.
void SetMaxHenchmen(int nNumHenchmen)

This function sets the maximum number of henchmen
allowed to nNumHenchmen. See G etMaxHenchmen .
void SummonAnimalCompanion(

object oMaster = OBJECT_SELF)
If the creature oMaster has an animal companion, this

routine will summon it into the game.
void SummonFamiliar(

object oMaster = OBJECT_SELF)
If the creature oMaster has a familiar, this routine will

summon it into the game.
void UnpossessFamiliar(

object oCreature)
The player creature oCreature is made to unpossess it's

familiar, if any.

Class Levels and Experience Points

These are routines related to character classes, class
packages, gaining experience points and levelling up. See
also GetFactionAverageXP and SetModuleXPScale.
float GetChallengeRating(object oCreature)

If oCreature is a valid creature, this routine will return the
creature's challenge rating as a floating point value. If the
input argument is not a valid creature, this will return 0.0.

int GetClassByPosition(
int nClassPosition,
object oCreature = OBJECT_SELF)

A creature can have as many as three different classes, and
these are slotted in positions 1 through 3. This call returns
the class type in position nClassPosition (1, 2 or 3) of the
creature oCreature. The result matches a CLASS_TYPE_...
constant, or CLASS_TYPE_INVALID if there is no class in
that position.
int GetCreatureStartingPackage(

object oCreature)
This returns a PACKAGE_... constant that gives the

default package selected for the creature oCreature to use
when levelling up.
int GetHitDice(object oCreature)

Return the number of hit dice of oCreature. If the object is
invalid, return 0.
int GetLevelByClass(

int nClassType,
object oCreature = OBJECT_SELF)

Return the number of levels the creature oCreature has in
the class nClassType, which is a CLASS_TYPE_... constant
matching the various standard classes in 'classes.2da'.
int GetLevelByPosition(

int nClassPosition,
object oCreature = OBJECT_SELF)

A creature can have as many as three different classes, and
these are slotted in positions 1 through 3. This call returns
the number of class levels in position nClassPosition (1, 2
or 3) of the creature oCreature.
int GetLevelUpPackage(

object oCreature)
This returns the level-up package for the creature

oCreature. The result is a row in the 'packages.2da' file. See
GetTotalLevels.
int GetMaxHitPoints(

object oObject = OBJECT_SELF)
This routine will return the maximum allotted hit points of

the object oObject.

12

Creatures

int GetTotalLevels(
object oCreature,
int bIncludeNegativeLevels)

This routine returns the total number of levels across all
three class positions for the creature oCreature. If the
bIncludeNegativeLevels parameter is true, the result will
also tally any negative levels, such as from the
EffectNegativeLevel effect. See GetHitDice.
int GetXP(object oCreature)

This returns the total experience points of the creature
oCreature. See SetXP and GiveXPToCreature.
void GiveXPToCreature(

object oCreature,
int nXpAmount)

This will award nXpAmount experience points, a positive
integer, to the creature oCreature. See SetXP.
int LevelUpHenchman(

object oCreature,
int nClass = CLASS_TYPE_INVALID,
int bReadyAllSpells = FALSE,
int nPackage = PACKAGE_INVALID)

This causes the creature oCreature to increase a class
level, even if it lacks the necessary experience points. It
returns the new level of the creature. By default it will level
up the first class, but this can be changed by setting nClass
to a different class constant CLASS_TYPE_.... If
bReadyAllSpells is true, then all spells will be instantly
readied without resting. The nPackage causes the level up
to use a non-default level-up package, PACKAGE_....
void ResetCreatureLevelForXP(

object oTarget,
int nExperience,
int bUseXPMods)

This routine resets the level of the creature oTarget to
zero, then sets the experience to nExperience and
automatically levels up the creature to the new experience
level. If bUseXPMods is true, then the creature's XP
modifiers will be applied to the experience awarded before
leveling up.
void SetLevelUpPackage(

object oCreature,
int nPackage)

This sets the level-up package for the creature oCreature

to nPackage, which is a PACKAGE_... constant
corresponding to a row in the 'packages.2da' file.
int SetUnrestrictedLevelUp(

object oCreature)
Normally a package can apply restrictions to a creature

levelling up, which are based upon the Starting Package
parameter setting. This call will disable these restrictions for
the creature oCreature, allowing level up in any eligible
class.
void SetXP(

object oCreature,
int nXpAmount)

This changes the creature oCreature's experience point
total to nXpAmount.

Modes and States
int GetActionMode(

object oCreature,
int nMode)

A creature can have various action modes set, such as
defensive casting or power attack. This will return the status
of the mode nMode on the creature oCreature. The mode is
an ACTION_MODE_... constant.
int GetAILevel(

object oTarget = OBJECT_SELF)
This returns the level of the game's artificial intelligence

that is being used to control the behavior of the creature
oTarget. The result is an AI_LEVEL_... constant. See
SetAILevel.
int GetDefensiveCastingMode(

object oCreature)
This routine returns a

DEFENSIVE_CASTING_MODE_... constant that gives the
defensive casting mode of the creature oCreature. There are
currently only two modes, activated and disabled.
int GetDetectMode(

object oCreature)
This queries the creature oCreature and returns the current

detection mode, which is a DETECT_MODE_... constant.
int GetEncumbranceState(object oCreature)

For a valid creature oCreature, this will return the current
encumbrance state as an ENCUMBRANCE_STATE_...

13

Creatures

constant. Valid states are normal, heavy and overloaded.
See also GetWeight.
int GetIsDead(object oCreature)

Returns true if the creature oCreature is dead. If the
creature is a PC, this function will also return true if the
creature is dying.
int GetIsResting(

object oCreature = OBJECT_SELF)
This routine will return true if a valid creature oCreature

is currently resting.
object GetSittingCreature(object oChair)

If oChair is a valid placeable, this will return the creature
object that is sitting upon it.
int GetStealthMode(object oCreature)

This returns a stealth mode of the creature oCreature. The
result is a constant STEALTH_MODE_... that currently has
two values: activated or disabled.
void SetActionMode(

object oCreature,
int nMode,
int nStatus)

This sets the status nStatus of the action mode nMode for
the creature oCreature. Valid modes are global constants
ACTION_MODE_....

Player Characters
int GetIsOwnedByPlayer(

object oCreature)
This returns true if the creature oCreature is an original

player character belonging to a player. See GetIsPC.
int GetIsPC(object oCreature)

If oCreature is a player controlled creature, this will return
true. It will return false if the player is currently controlling
a different creature, even if oCreature is the player's
original character. See GetIsOwnedByPlayer.
int GetIsPlayableRacialType(

object oCreature)
If the creature oCreature is a playable racial type, then this

call will return true. The playable races are dwarf, elf,
gnome, halfling, half-elf, half-orc and human.

int GetIsPlayerCreated(
object oCreature)

This returns true if the creature oCreature was created by
a player.
object GetLastPCRested()

This call will fetch the object representing the last PC to
rest in the current module.
object GetOwnedCharacter(

object oControlled)
If the object oControlled is being controlled by a player,

then this call will return that player's character.

Properties

See also GetCreatureHasTalent.
int GetAbilityModifier(

int nAbility,
object oCreature = OBJECT_SELF)

This returns the modifier for the ability nAbility of the
creature oCreature. The nAbility is a global constant of the
form ABILITY_.... The modifier is 0 for an ability score of
10 or 11, and changes by one per two points of ability score
change.
int GetAbilityScore(

object oCreature,
int nAbilityType,
int nBaseAttribute = FALSE)

The nAbilityType variable must be set to one of the
ABILITY_... global constants. If nBaseAttribute is true, this
function returns the base attribute score of the creature
oCreature. Otherwise, it will return the modified attribute
score of the creature.

The nBaseAttribute defaults to false if it is not set. On an
error, this function returns 0.
int GetAC(

object oObject,
int nForFutureUse = 0)

For a creature oObject, this will return the armor class. It
returns zero for a door, item or placeable, and -1 otherwise.
Use the GetHardness call to obtain the damage resistance of
a door or placeable. At present, the nForFutureUse
parameter is ignored.

14

Creatures

int GetAge(object oCreature)
This returns the age setting of the creature oCreature. This

parameter is not a configurable creature property, so this
only returns a non-zero value for a PC.
int GetAppearanceType(

object oCreature)
This returns the appearance type property of the creature

oCreature. This is an APPEARANCE_TYPE_... constant.
int GetCharBackground(object oCreature)

This returns a constant of the form BACKGROUND_...
that gives the character background of the creature
oCreature. If the creature does not have a background,
BACKGROUND_NONE is returned. Typically only a PC
will have a background.
int GetCreatureSize(object oCreature)

This returns a constant CREATURE_SIZE_... that gives
the size category of the creature oCreature. The valid
values are tiny, small, medium, large, huge, or invalid. It
does not include fine, diminutive, gargantuan or colossal.
string GetDeity(object oCreature)

This function returns a string containing the name of the
creature's deity. If the oCreature object is invalid, an empty
string is returned.
int GetGender(object oCreature)

This returns the gender of the creature oCreature as a
constant of the form GENDER_....
int GetGold(

object oTarget = OBJECT_SELF)
Return the amount of gold currently possessed by oTarget.

If oTarget is not specified, it defaults to OBJECT_SELF.
int GetImmortal(

object oTarget = OBJECT_SELF)
This returns true if the target oTarget is a creature that has

the Immortal property set to true. See SetImmortal.
int GetIsDM(object oCreature)

If the creature oCreature is the Dungeon Master character,
return true.
int GetIsDMPossessed(object oCreature)

If the creature oCreature is currently possessed by the
Dungeon Master character, return true.

int GetIsImmune(
object oCreature,
int nImmunityType,
object oVersus = OBJECT_INVALID)

This call returns true only if the creature oCreature has
immunity of type nImmunityType against the race and
alignment of object oVersus. The immunity is a constant of
the form IMMUNITY_TYPE_.... If oVersus is an invalid
object, then the routine only checks if the immunity exists.
int GetIsSpirit(object oCreature)

This routine will return true if the creature oCreature is a
valid object and either the 'SpiritOverride' property is set to
true or the racial type is an elemental or a fey.
int GetLootable(object oCreature)

This returns true if a valid creature oCreature is flagged as
lootable.
int GetMovementRate(

object oCreature)
This returns the speed of the creature oCreature.

float GetMovementRateFactor(
object oCreature)

This returns to the movement rate factor that is applied to
the creature oCreature's speed. This factor is influenced by
selected effects and encumbrance.
object GetNearestCreature(

int nFirstCriteriaType,
int nFirstCriteriaValue,
object oTarget = OBJECT_SELF,
int nNth = 1,
int nSecondCriteriaType = -1,
int nSecondCriteriaValue = -1,
int nThirdCriteriaType = -1,
int nThirdCriteriaValue = -1)

This routine can be used to find the nNth closest creature
to the object oTarget that satisfies a set of criteria. Up to
three criteria type/value pairs can be specified that the
creature must satisfy. The criteria type is a global constant
CREATURE_TYPE_..., while the criteria value depends on
the type suffix as follows:

• _CLASS ‒ The value is a CLASS_TYPE_... constant
that matches a character class.

• _ DOES_NOT_HAVE_SPELL_EFFECT ‒ The value

15

Creatures

is a SPELL_... constant that matches a spell.
• _HAS_SPELL_EFFECT ‒ The value is a SPELL_...

constant that matches a spell.
• _IS_ALIVE ‒ Use a CREATURE_ALIVE_...

constant for the value to specify whether to check for
creatures that are alive, dead or both.

• _PERCEPTION ‒ A PERCEPTION_... constant for
the value matches based on whether a creature has
been perceived or not, and by what sense.

• _PLAYER_CHAR ‒ The value is a global constant of
the form PLAYER_CHAR_....

• _RACIAL_TYPE ‒ A RACIAL_TYPE_... for value
will match on a particular creature racial type.

• REPUTATION ‒ The value must be a constant of the
form REPUTATION_TYPE_..., indicating a friendly,
neutral or enemy reputation status.

• SCRIPTHIDDEN ‒ This can be used to select for
creatures based on their Script Hidden property by
setting value to a CREATURE_SCRIPTHIDDEN_...
constant.

object GetNearestCreatureToLocation(
int nFirstCriteriaType,
int nFirstCriteriaValue,
location locAt,
int nNth = 1,
int nSecondCriteriaType = -1,
int nSecondCriteriaValue = -1,
int nThirdCriteriaType = -1,
int nThirdCriteriaValue = -1)

This routine is similar to GetNearestCreature, except that
the call returns creatures based on their proximity to the
location locAt. See the GetNearestCreature notes for details
on the valid parameter values.
int GetPolymorphLocked(

object oCreature)
This call will return true only if oCreature is a valid

creature and it has the polymorph locked flag set.
int GetRacialType(object oCreature)

Returns the racial type of a creature object oCreature as a
constant integer. The result matches one of the
RACIAL_TYPE_... variables. If the object is not a valid
creature, return RACIAL_TYPE_INVALID. Note that there

is no RACIAL_TYPE_PLANT constant. Instead check for
the number '22', which corresponds to the Plant row of the
'racialtypes.2da' file.
int GetSpellResistance(

object oCreature)
This will return the spell resistance of the creature

oCreature.
int GetSubRace(object oCreature)

If oCreature is a creature, this will return the racial
subtype as a value matching a RACIAL_SUBTYPE_...
constant. See SetSubRace.

16

Effects

Effects

By default, the subtype of an effect is of subtype magical.
This means the effect can be removed by a dispel magic
spell or rest.

Management

void ApplyEffectAtLocation(
int nDurationType,
effect eEffect,
location locAt,
float fDuration = 0.0f)

This routine will apply the effect eEffect at the location
locAt. Valid values for nDurationType are constants of the
form DURATION_.... If the duration type is temporary,
then the length is fDuration in seconds. Otherwise,
fDuration is ignored.
void ApplyEffectToObject(

int nDurationType,
effect eEffect,
object oTarget,
float fDuration = 0.0f)

This routine will apply the effect eEffect to the object
oTarget, which can be a creature or a non-static placeable.
Valid values for nDurationType are constants of the form
DURATION_.... If the duration type is temporary, then the
length is fDuration in seconds. Otherwise, fDuration is
ignored. To make an effect permanent, make the effect
supernatural and use DURATION_TYPE_PERMANENT.
void RemoveEffect(

object oCreature,
effect eEffect)

This removes effect eEffect from creature oCreature. Most
effects can also be removed by resting or a dispel.
void RemoveSEFFromObject(

object oObject,
string sSEFName)

This call removes an instance of a special effect file (SEF)
with the name sSEFName from the object oObject. This
essentially removes all instances of the effect from the
object, since there can only be a single instance of an effect
running on an object at once.

effect SetEffectSpellId(
effect eEffect,
int nSpellId)

This associates a spell identifier nSpellId with the effect
eEffect, as well as any effects linked to it. This is useful for
example, when there is a subsequent need to locate specific
effects that do not have an EFFECT_TYPE_... constant. It
is also useful for subsequent removal of effects that were
applied by an item's tag-based On Equip script. Use the
GetEffectSpellId call to find the nSpellId of a particular
effect, if any. The function returns -1 if the effect does not
have a spell identifier.

Restrictions

These calls apply restrictions to effects.
effect VersusAlignmentEffect(

effect eEffect,
int nLawChaos = ALIGNMENT_ALL,
int nGoodEvil = ALIGNMENT_ALL)

For an effect eEffect belonging to a restricted set of
effects, this will return an effect that is limited in it's
effectiveness to alignments nLawChaos along the law-chaos
axis and alignments nGoodEvil along the good-evil axis.
The nLawChaos parameter is a ALIGNMENT_... constant
that has a LAWFUL, CHAOTIC or ALL suffix. The
nGoodEvil parameter is an ALIGNMENT_... constant that
has a GOOD, EVIL or ALL suffix.

The notes for this routine list the effects that can be
modified by this routine. Other effect types will be
unmodified.
effect VersusRacialTypeEffect(

effect eEffect,
int nRacialType)

When passed a valid effect eEffect, this will return an
effect that only functions against creatures belonging to the
racial type nRacialType, which is a RACIAL_TYPE_...
constant. This can be used, for example, on an
EffectACIncrease to limit the benefits to attacks by
creatures from that racial type. Example: 'nw_s3_herb'.

For this effect, the GetEffectInteger routine appears to
return the racial type for the last integer value after all the
values for the base effect type have been queried. Thus, a

17

Effects

racial type effect for an AC increase will return the modify
type in the first field, the AC increase in the second field,
and the racial type in the third field.
effect VersusTrapEffect(

effect eEffect)
For a valid effect eEffect, this will return an effect that is

only valid against traps.

Subtypes

The subtype can be changed using the following functions.
By default an effect is of subtype SUBTYPE_MAGICAL.
effect ExtraordinaryEffect(effect eEffect)

This routine returns the effect eEffect with its subtype
changed to extraordinary. Extraordinary effects can not be
removed by a dispel magic spell, but they can be removed
by resting.
effect MagicalEffect(effect eEffect)

This routine returns the effect eEffect with its subtype
changed to magical. These effects can be removed by a
dispel magic spell or by resting.
effect SupernaturalEffect(effect eEffect)

This routine returns the effect eEffect with its subtype set
to supernatural. Permanent supernatural effects can not be
removed by resting.

Query
object GetEffectCreator(

effect eEffect)
This call returns the object that created the effect eEffect.

If the effect is produced by an ApplyEffect... call from an
event handler script, then the object returned is what ran the
script.
int GetEffectDurationType(

effect eEffect)
This returns a DURATION_TYPE_... constant giving the

duration type of the effect eEffect, or -1 if the effect is not
valid.
int GetEffectInteger(

effect eEffect,
int nIndex)

This returns an integer value for the parameter nIndex of

the effect eEffect. Normally, the first parameter has an
nIndex value of 0, the second has an nIndex of 1, and so
forth. The value returned depends on the type of effect.
int GetEffectSpellId(

effect eEffect)
If an effect eSpellEffect was applied by a spell, or if a spell

identifier was assigned using SetEffectSpellId, then this
routine returns the spell identifier SPELL_... of the effect
eEffect. This can be used to match up specific effects from a
particular cause.
int GetEffectSubType(

effect eEffect)
This routine returns the subtype of the effect eEffect,

which matches a SUBTYPE_... constant. See the Subtypes
section.
int GetEffectType(

effect eEffect)
This call returns a constant EFFECT_TYPE_... that

corresponds to the type of the effect eEffect. If an effect is
invalid, or if a valid effect does not have a valid type, this
function returns EFFECT_INVALIDEFFECT.
effect GetFirstEffect(

object oCreature)
This returns the first of possibly multiple effects on the

creature oCreature. This routine re-initializes the sequence
of effects returned by repeated calls to the GetNextEffect
function.
int GetHasFeatEffect(

int nFeat,
object oObject = OBJECT_SELF)

This call returns true only if the object oObject has any
effects generated by the feat nFeat, which is a FEAT_...
constant.
int GetHasAnySpellEffect(

object oObject)
This routine returns true if the object oObject is valid and

has any spell effects applied to it.
int GetHasSpellEffect(

int nSpell,
object oObject = OBJECT_SELF)

This returns true of the object oObject has any active
effects applied by the spell with identifier nSpell, which is a

18

Effects

SPELL_... constant. This will not return true when an effect
is created via a delayed command that generates a spell.
int GetIsEffectValid(

effect eEffect)
If the effect eEffect is a valid effect and it has been applied

to a creature, this should return true. Otherwise it will return
false. An alternative is to call GetEffectType on the effect
and test if it returns EFFECT_TYPE_INVALIDEFFECT.
effect GetNextEffect(

object oCreature)
Calling GetFirstEffect will return the first effect on the

creature oCreature. Thereafter, repeatedly calling this
routine will return the next in the sequence of effects on the
creature. Finally, EFFECT_TYPE_INVALIDEFFECT is
returned when there are no additional effects.
int GetIsEffectValid(effect eEffect)

This routine should return true if the effect eEffect has
been created by an Effect... routine and it has been applied
to an object. However, this routine did not work properly
even when the effects were properly applied, so I would not
rely on it.

Constructors

These are the various effects that can be applied. Many of
the effects have a type matching an EFFECT_TYPE_...
constant, and the various types have one or more
corresponding icons listed in 'effecticons.2da'.

Basic
effect EffectBlindness()

The subject of this effect is rendered blind. This gives the
subject a -4 to attacks and a 50% chance to miss entirely.
Example: 'nw_s0_blinddeaf'.
effect EffectCharmed()

This causes a charm effect, with the effected creature
being charmed by the calling object. A charmed creature is
unable to attack the charmer. Example: 'nw_s0_charmper'.
effect EffectConcealmentNegated()

When this goes into effect, all concealment and miss
chance effects on the target are ignored. It effectively
cancels out EffectConcealment and EffectMissChance

effects while it is active.
effect EffectConfused()

The target of this effect behaves confused, per the 4th level
wizard confusion spell. The subject will either wander
aimlessly, stand still or attack the nearest visible target.
Example: 'nw_s0_confusion'.
effect EffectDamageReductionNegated()

When this is in effect, all damage reduction on a creature
is ignored. Example: 'x2_s1_psibarr'.
effect EffectDarkness()

Creates an effect like the darkness spell. A creature in
darkness is blinded but is invisible to others. However, note
that the 'nw_s0_darknessa' script uses EffectConcealment
instead of this call.
effect EffectDarkVision()

Provides the recipient with dark vision, allowing it to see
in complete darkness. There is no argument for setting a
range. The description for the Half-Orc says that this ability
allows the recipient to see in the dark up to 60 feet.
Example: 'nw_s0_iseeunsen'.
effect EffectDazed()

The target is dazed, and can take no actions except move,
but does not suffer an AC penalty. Examples: 'nw_s0_daze'
and 'nw_s0_hammgods'.
effect EffectDeaf()

The subject is deaf. The game rules apply a -4 penalty to
initiative, automatic failure on Listen checks and a 20%
chance of spell failure. Example: 'nw_s0_blinddeaf'.
effect EffectDetectSpirits()

This allows spirits to be detected by the target. They will
be displayed on the minimap. Spirits include fey, elementals
and incorporeal undead such as wraith and shadows.
Example: 'nx_s0_detectspirits'.
effect EffectDetectUndead()

This effect allows undead to be detected. They will be
displayed on the minimap. Example: 'nw_s0_detctundd'.
effect EffectDominated()

The target is subject to a domination effect, such as that
produced by a dominate monster spell. The target is
dominated by the object applying the effect. A dominated
PC is dazed, while a dominated NPC can be forced to attack

19

Effects

an enemy of the dominator. Example: 'nw_s0_dompers'.
effect EffectEntangle()

The subject has it's movement restricted, takes a -2 penalty
to all attacks and a -4 penalty to armor class. Example
scripts: 'nw_s0_entangle' and 'x0_s3_tangle'.
effect EffectEthereal()

The subject of this effect is ignored by enemies. Example
script: 'x0_s0_ether'.
effect EffectFrightened()

The target is subject to a fear effect, which causes it to run
away from the source. A frightened creature suffers a -2
penalty to saving throws. Example: 'nw_s0_fear'.
effect EffectHaste()

This creates the effect of a haste spell, which increases
movement by 50%, allows an extra attack action, and gives
a +1 dodge bonus to AC. Spell times are halved while
hasted. Example: 'nw_s0_haste'.
effect EffectJarring()

The notes say this creates a jarring effect. I observed no
result from applying this to either a creature or a location.
effect EffectKnockdown()

The subject will be knocked off their feet then remain
sitting until the effect wears off. The notes recommend
applying this as a temporary effect lasting at least 3
seconds. This does not have a matching EFFECT_TYPE_...
constant. Example: 'x0_s0_gustwind'.
effect EffectInsane()

The notes for this command say it causes the subject to
attack the nearest target, whether friend or foe. Note that the
insanity spell is a continual EffectConfused. The notes in
'nw_g0_insane' say that it is the heartbeat script for any
creature subject to this effect.
effect EffectLowLightVision()

The effect recipient becomes the beneficiary of the low-
light vision special ability. Example: 'nw_s0_lowltvisn'.
This does not have a matching EFFECT_TYPE_... constant.
effect EffectMaxDamage()

Each time the subject makes a successful weapons-based
attack, the maximum possible damage is applied. That is, if
dice are rolled, the damage uses the highest number of pips
on each dice. Example: 'nw_s2_furaslt'.

effect EffectNWN2ParticleEffect()
The notes say this creates a particle effect on an object or

at a location. I saw no result from applying this effect. See
the EffectNWN2ParticleEffectFile call.
effect EffectPetrify()

The effect description says the target is petrified, and is
inflicted with a paralyze effect and a stoneskin visual
covering. However, when I tested this there was no visual
effect. This effect is used with the Burst of Glacial Wrath
spell, as applied by the 'nx_s0_glacial' script.

Note that there is no EffectImmunity effect option that can
negate a petrify effect. In the 'x0_i0_spells' include file, the
spellsIsImmuneToPetrification routine grants immunity to
certain creatures based upon their appearance.
effect EffectResurrection()

When applied as an instantaneous effect, the target is
brought back to life after being slain. This likely requires
that the creature's Resurrectable property be set to true.
Example: 'nw_s0_raisdead'.
effect EffectSeeInvisible()

The target is able to see invisible creatures and target them
with spells and attacks. Example: 'nw_s0_seeinvis'.
effect EffectSeeTrueHPs()

The effect notes say that this allows the hit points of the
subject to be viewed. This does not have a matching
EFFECT_TYPE_... constant. I observed no result from
applying this effect.
effect EffectSilence()

This creates a silence effect like the cleric spell silence.
The target can make no noise and can not hear anything.
Most spells can not be cast while silenced. Example script:
'nw_s0_silencea'.
effect EffectSleep()

The recipient is subject to a sleep effect, like the wizard
sleep spell. Some creatures are immune to sleep. Example
script: 'nw_s0_sleep'.
effect EffectSlow()

The subject of this effect is slowed, per the wizard slow
spell. The target moves at 50% of normal speed and suffer a
-2 penalty to AC, reflex saves, and attack rolls. The number
of attacks per round is reduced by one. Example script:

20

Effects

'nw_s0_slow'.
effect EffectStunned()

The effect's target is stunned. This can also be used on an
animal to make it stand motionless and not turn to face the
PC on a conversation attempt. Example: 'nw_s0_pwstun'.
effect EffectTimeStop()

This effect should stop all activities except for the target of
the effect. Note that there is no time stop spell in NWN2.
Example: 'nw_s0_timestop'.
effect EffectTrueSeeing()

This creates an effect like the true seeing spell that allows
the subject target ethereal and invisible creatures. Example
script: 'nw_s0_truesee'.
effect EffectTurned()

This effect causes the recipient to behave as turned, as per
the clerical turn undead ability. Example: 'nw_s2_turndead'.
effect EffectUltravision()

The recipient gains the ultravision ability. The benefits of
this effect are not described. Example: 'nw_s0_darkvis'.
effect EffectWildshape()

This effect flags the recipient as using the wild shape
ability, but does not cause the polymorph. You can link this
with an EffectPolymorph for a natural shape shifting effect.

Configurable
effect EffectAbilityDecrease(

int nAbility,
int nModifyBy)

The ability nAbility is one of the ABILITY_... constants.
This effect will reduce the ability score by an amount
nModifyBy. The latter is a positive integer. If the subject is a
PC, this will cause a red icon to appear next to the portrait
and an entry in the character window for the duration.
Example script: 'nw_s3_alcohol'.

For this effect, the GetEffectInteger routine will return the
ability type for the first integer value and the ability
modifier for the second.
effect EffectAbilityIncrease(

int nAbility,
int nModifyBy)

The ability nAbility is one of the ABILITY_... constants.
This effect will increase the ability score by an amount

nModifyBy. The latter is a positive integer. If the subject is a
PC, this will cause a blue icon to appear next to the portrait
and an entry in the character window for the duration.
Example: 'x0_s0_owlins'.

For this effect, the GetEffectInteger routine will return the
ability type for the first integer value and the ability
modifier for the second.
effect EffectAbsorbDamage(

int nACTest)
The notes for this call indicate it creates a damage

absorption effect. The nACTest parameter gives the armor
class that must be exceeded to bypass the damage
absorption. How then does this differ from the normal
armor class?

For this effect, the GetEffectInteger routine will return the
nACTest parameter for the first integer value. I tested the
effect but observed no damage absorption. See also
EffectDamageReduction.
effect EffectACDecrease(

int nValue,
int nModifyType = AC_DODGE_BONUS,
int nDamageType =
 AC_VS_DAMAGE_TYPE_ALL)

This is similar to EffectACIncrease, except it reduces the
armor class by the amount nValue. The cause of the
reduction is nModifyType and it applies to damage of type
nDamageType. The first is a valid global constant value of
the type AC_..._BONUS. The second is a valid global
constant of the type DAMAGE_TYPE_..., or else the
default type above that is valid against all damage types.
There is only one AC_VS_* constant.

For this effect, the GetEffectInteger routine will return the
modification type for the first integer value and the AC
reduction for the second.
effect EffectACIncrease(

int nValue,
int nModifyType = AC_DODGE_BONUS,
int nDamageType =
 AC_VS_DAMAGE_TYPE_ALL,
int bVsSpiritsOnly = FALSE)

This effect applies an nValue increase in armor class of
type nModifyType, where the latter is a valid constant of

21

Effects

type AC_..._BONUS. Note that armor class bonuses of the
same type do not stack. If the nDamageType is a constant of
type DAMAGE_TYPE_..., it only applies against attacks
that inflict that damage type. If bVsSpiritsOnly is true, the
bonus only applies against attacks by elementals, fey or
creatures that return true to the GetIsSpirit routine.

Examples: 'nw_s0_barkskin' and 'x0_s0_shield'.
effect EffectAppear(

int nAnimation = 1)
The nAnimation setting for this call determines the

animation that a creature will use to appear or disappear.
The call notes mention that most creatures only have a
single animation available. This does not have a matching
EFFECT_TYPE_... constant.
effect EffectArcaneSpellFailure(

int nPercent)
This effect will increase the probability of arcane spell

failure by a percentage of nPercent. The effect stacks with
the arcane spell failure effect caused by armor and shields.
It is ignored by classes and special abilities that are not
subject to the arcane spell failure rules. Thus it would not
impact divine spells.

 The GetEffectInteger routine will return the percentage
value in the first integer for this effect.
effect EffectArmorCheckPenaltyIncrease(

object oTarget,
int nPenaltyAmt)

This effect will increase the armor check penalty by
nPenaltyAmt for the creature target. Why is oTarget being
passed here?
effect EffectAssayResistance(

object oTarget)
The subject of this effect gains a bonus versus spell

resistance against the target oTarget. According to the notes
for the assay resistance spell, this effect gives a +10 bonus
on caster level checks to overcome the target's spell
resistance. Example script: 'nw_s0_assayrest'.
effect EffectAttackDecrease(

int nPenalty,
int nModifierType =
 ATTACK_BONUS_MISC)

This effect decreases the base attack of the subject by the

amount nPenalty, a positive integer. The nModifierType is
equal to one of the ATTACK_BONUS_... constants. The
GetEffectInteger routine will return the value of the penalty
in the first integer for this effect and the modifier type in the
second. Example: 'x0_s0_flare'.
effect EffectAttackIncrease(

int nBonus,
int nModifierType =
 ATTACK_BONUS_MISC)

This increases the subject's base attack of the modifier
type nModifierType by the amount nBonus. The
nModifierType is equal to one of the ATTACK_BONUS_...
constants. Example: 'x0_s0_truestrike'.
effect EffectBABMinimum(int BABMin)

The call notes say this creates a base attack bonus
minimum effect BABMin, but it is unclear what this actually
does. This does not have a matching EFFECT_TYPE_...
constant.
effect EffectBardSongSinging(

int nSpellID)
This creates the effect of one of the bard songs with spell

ID nSpellID. Should this be a FEAT_BARDSONG_...
constant?
effect EffectBeam(

int nBeamVisualEffect,
object oEffector,
int nBodyPart,
int bMissEffect = FALSE)

This effect causes a beam to be emitted from the object
oEffector toward the effect subject, which must be an
object. The bBeamVisualEffect is a constant of type
VFX_BEAM_... that determines the beam type, such as
VFX_BEAM_LIGHTNING for a continuous stream of
lightning. The nBodyPart is a constant of the form
BODY_NODE_.... If bMissEffect is true, the beam will
miss the target and hit a random location nearby. This effect
should be applied with a temporary or permanent duration.
Examples: 'nw_s0_rayfrost' and 'nw_s0_chlightn'.
effect EffectBonusHitpoints(

int nHitpoints)
This effect provides the subject an additional nHitpoints,

just as if he had gained them from normal class level

22

Effects

progression. While the effect continues, if the hit points are
lost due to damage, they can be healed again.
effect EffectBreakEnchantment(

int nLevel)
This effect functions like a spell that will free the target

from curses, enchantments and transmutations, at a caster
level determined by nLevel.
effect EffectConcealment(

int nPercentage,
int nMissType =
 MISS_CHANCE_TYPE_NORMAL)

The subject of this effect gains the benefits of concealment
with the percentage nPercentage. The nMissType is a
constant MISS_CHANCE_TYPE_..., which can be used to
limit the effect to melee or ranged. The GetEffectInteger
routine will return the value of the miss percentage in the
first integer for this effect. Example: 'x0_s0_entrshield'.
effect EffectCurse(

int nStrMod = 1,
int nDexMod = 1,
int nConMod = 1,
int nIntMod = 1,
intWisMod = 1,
int iChaMod = 1)

This effect applies a curse effect that results in a reduction
of the subject's characteristics by the amounts passed in the
arguments. Thus the nConMod determines the reduction in
the Constitution ability score. Example: 'nw_s0_bescurse'.

Note that the bestow curse spell has multiple possible
effects, one of which is a reduction of up to 6 in a single
characteristic. A second effect is a -4 penalty on attacks,
saves, ability checks and skill checks, which would require
multiple combined effects.
effect EffectDamage(

int nDamageAmount,
int nDamageType =
 DAMAGE_TYPE_MAGICAL,
int nDamagePower =
 DAMAGE_POWER_NORMAL,
int bIgnoreResistances = FALSE)

When applied as an instantaneous effect, this inflicts
nDamageAmount points of damage to the subject. The
damage is of type nDamageType, which is a constant value

of the form DAMAGE_TYPE_.... Creatures with energy
resistance may ignore some of the damage of the matching
type. The nDamagePower is a DAMAGE_POWER_...
global constant. If bIgnoreResistances is true, the damage
will bypass any damage immunity, reduction or resistance
on the subject.

This does not have a matching EFFECT_TYPE_...
constant.
effect EffectDamageDecrease(

int nPenalty,
int nDamageType =
 DAMAGE_TYPE_MAGICAL)

This effect will reduce the damage of type nDamageType
that the subject can inflict by the amount nPenalty. The type
is a constant of the form DAMAGE_TYPE_.... The value
DAMAGE_TYPE_ALL reduces all damage, regardless of
the type.
effect EffectDamageImmunityDecrease(

int nDamageType,
int nPercentImmunity)

This call decreases the subject's damage immunity by the
percentage nPercentImmunity against the nDamageType
type of damage. The damage type is a DAMAGE_TYPE_...
global constant, with DAMAGE_TYPE_ALL applying to
all damage types.
effect EffectDamageImmunityIncrease(

int nDamageType,
int nPercentImmunity)

This call increases the subject's damage immunity by the
percentage nPercentImmunity against the nDamageType
type of damage. The damage type is a DAMAGE_TYPE_...
global constant, with DAMAGE_TYPE_ALL applying to
all damage types. Example: 'nx_s2_immunityelectricity'.
effect EffectDamageIncrease(

int nBonus,
int nDamageType =
 DAMATE_TYPE_MAGICAL,
int nVersusRace = -1)

This effect will increase the amount of damage inflicted by
nBonus, which must be one of the DAMAGE_BONUS_...
constants. (The command notes that failure to use these
constants can result in odd behavior.) The bonus is of type

23

Effects

nDamageType, which is a DAMAGE_TYPE_... global
constant. The nVersusRace parameter is undocumented.
effect EffectDamageOverTime(

int nAmount,
float fIntervalSeconds,
int nDamageType =
 DAMAGE_TYPE_MAGICAL,
int nIgnoreResistances = FALSE)

This effect inflicts nAmount of hit point damage over
fIntervalSeconds seconds, rather than instantaneously.
(Thus it works like a wounding effect.) The damage is of
type nDamageType, which is a global constant
DAMAGE_TYPE_.... If nIgnoreResistances, the damage
will bypass the target's damage immunity, reduction and
resistance. Note that there is no immunity effect or item
property that works specifically against this effect.
effect EffectDamageReduction(

int nAmount,
int nDRSubType =
 DAMAGE_POWER_NORMAL,
int nLimit = 0,
int nDRType = DR_TYPE_MAGICBONUS)

This will reduce the amount of damage of type nDRType
and sub-type nDRSubType by nAmount. If nLimit is not
zero, this effect will absorb that amount of damage then end
(as per the stoneskin spell). Otherwise it will absorb an
infinite amount of damage.

The damage reduction type nDRType is a global constant
DR_TYPE_.... The subtype depends on the type. Thus, if
nDRType is DR_TYPE_ALIGNMENT, the subtype is an
ALIGNMENT_... constant representing a particular
location on the alignment grid, or ALIGNMENT_ALL.
Thus, for 'damage reduction 5/magic', set the nAmount to 5,
nDRType to DR_TYPE_MAGICBONUS, nLimit to 0 and
nDRSubType to DAMAGE_POWER_NORMAL.

Example: 'nw_s0_protarrow'.
effect EffectDamageResistance(

int nDamageType,
int nAmount,
in nLimit = 0)

This will reduce the amount of damage by nAmount from
a specific damage type nDamageType. The latter is a global
constant DAMAGE_TYPE_.... This effect ends when

nLimit points of damage have been absorbed, or it can
absorb an infinite amount when nLimit is zero. Example
script: 'nw_s2_shnshld'.
effect EffectDamageShield(

int nDamageAmount,
int nRandomAmount,
int nDamageType)

When an attacker makes a successful attack of type
nDamageType to the effect target, the attacker suffers a
base nDamageAmount of damage plus a nRandomAmount
global constant of the form DAMAGE_TYPE_... that
determines the random damage. The nDamageType is a
DAMAGE_TYPE_... constant.

For this effect, the GetEffectInteger routine will return the
value of the damage amount with the first integer, the value
of the random amount constant with the second, and the
value of the damage type constant with the third.
effect EffectDeath(

int nSpectacularDeath = FALSE,
int nDisplayFeedback = TRUE,
int nIgnoreDeathImmunity = FALSE,
int bPurgeEffects = TRUE)

This effect can be applied to make a mortal creature (with
'plot' and 'immortal' properties set to false) appear to die. If
nSpectacularDeath is true, the creature will die in a
spectacular fashion. The nIgnoreDeathImmunity flag will
ignore death immunity. The bPurgeEffects preserves visual
effects on the body, but may cause the effect to fail in some
circumstances (such as bonus HP).

This does not have a matching EFFECT_TYPE_...
constant. Example script: 'nw_s0_destruc'.
effect EffectDisappear(int nAnimation = 1)

This effect causes a creature to move away and then
destroy itself. The nAnimation determines how the creature
moves away. The command notes say that most creatures
only have one animation mode.
effect EffectDisappearAppear(

location locReappear,
int nAnimation = 1)

This effect functions like EffectDisappear, except that
when the effect ends the creature will reappear at the
location locReappear.

24

Effects

effect EffectDisease(int nDiseaseType)
The target of this effect is infected with the disease

nDiseaseType, which is a constant DISEASE_.... The
standard disease types are defined in the disease.2da file.
Thus, DISEASE_DEMON_FEVER is a supernatural
disease type with a DC 18 save to avoid infection, an
incubation period of 1 hour, and inflicting 1d6 damage to
Constitution. After 24 hours, the script nw_s3_demonfev is
run, which can inflict a permanent 1 point Con loss.
Example script: 'nw_s0_contagion'.
effect EffectDisintegrate(object oTarget)

This effect creates a disintegrate visual effect that is
applied to the target oTarget. The command notes
recommend that the creature already be dead when this is
run.
effect EffectDispelMagicAll(

int nCasterLevel,
action aOnDispelEffect)

This creates a dispel magic effect at caster level
nCasterLevel on all effects on the target. If any of the
effects is removed, the action aOnDispelEffect will be
called once. See the Actions section. For best results, this
should be called using the 'spellsDispelMagic' function in
'x0_i0_spells'.
effect EffectDispelMagicBest(

int nCasterLevel,
action aOnDispelEffect)

This functions like EffectDispelMagicAll, except it is only
applied to the 'best' effect. It is unclear what criteria is used
to select the 'best'. For best results, this should be called
using the 'spellsDispelMagic' function in 'x0_i0_spells'.
effect EffectEffectIcon(int nEffectIconId)

This places an effect icon above the subject creature. The
value nEffectIconId is an EFFECT_TYPE_... constant that
gives the row number in the 'effecticons.2da' file.
effect EffectHeal(int nDamageToHeal)

When applied as an instantaneous effect, this will heal
nDamageToHeal points of damage to creatures, doors and
placeables (as of patch v1.06). It has no effect if
nDamageToHeal is below zero. This does not have a
matching EFFECT_TYPE_... constant. Example script:
'nw_s2_wholeness'.

effect EffectHealOnZeroHP(
object oTarget,
int nDamageToHeal)

The target oTarget of this effect will be healed for
nDamageToHeal points of damage when it falls to zero hit
points or below.
effect EffectHideousBlow(

int nMetaMagic)
This causes a hideous blow effect using the nMetaMagic

modifier, which is a METAMAGIC_... constant. This
implements the Warlock power of the same name. Example:
'nw_s0_ihideousb'.
effect EffectHitPointChangeWhenDying(

float fHitPointChangePerRound)
If fHitPointChangePerRound is not zero, this changes that

amount of hit points per round in the target. Per the rules
books, PCs with hit points between -1 and -9 lose one hit
point per round until bandaged.
effect EffectImmunity(int nImmunityType)

This creates an immunity of type nImmunityType, which is
an IMMUNITY_TYPE_... constant. The GetEffectInteger
routine will return the value of the immunity type in the first
integer for this effect. Example scripts: 'nw_s0_freemove'
and 'nw_s0_deaward'.
effect EffectInvisibility(

int nInvisibilityType)
The subject gains invisibility of the type nInvisibilityType,

which is an INVISIBILITY_TYPE_... constant. Example:
'nw_s2_invisib'.
effect EffectLinkEffects(

effect eChildEffect,
effect eParentEffect)

This call links the child effect eChildEffect as a child of
the parent effect eParentEffect, returning the linked effect.
This is useful, for example, when you want the removal of
one of the effects to also cause the removal of the linked
effects. See the call notes on what happens when the subject
is immune to one of the effects.

This routine does not have a matching EFFECT_TYPE_...
constant. The script 'nw_s0_freemove' contains an example
of multiple linked effects.

25

Effects

effect EffectMesmerize(
int nBreakFlags,
float fBreakDist = 0.0f)

The effect recipient causes a mesmerizing effect within the
radius fBreakDist. The nBreakFlags is a set of boolean
flags, based on a sum of MESMERIZE_BREAK_ON_...
constants, that determines what types of events can disrupt
the mesmerize effect.
effect EffectMissChance(

int nPercentage,
int nMissChanceType =
 MISS_CHANCE_TYPE_NORMAL)

If nPercentage is a value between 1 and 99, this creates an
effect that causes a miss chance during an attack of type
nMissChanceType, which is a MISS_CHANCE_TYPE_...
variable that determines the types of attacks that can miss.
This can be a normal, melee or ranged attack.

This is essentially the same as EffectConcealment.
effect EffectModifyAttacks(int nAttacks)

This increases the number of attacks per round of the
effected target by nAttacks. The nAttacks parameter is
limited to 5 or less. This does not have a matching
EFFECT_TYPE_... constant.

Normally, a character has a number of attacks equal to 1 +
(BAB – 1)/5, where BAB is the base attack bonus.
effect EffectMovementSpeedDecrease(

int nPercentChange)
This reduces the movement speed by nPercentChange

percentage, which is an integer between 0 and 99. Thus a
value of 99 will slow movement to a crawl.
effect EffectMovementSpeedIncrease(

int nPercentChange)
This increases the movement by nPercentChange percent,

which is an integer between 0 and 99. Thus, the maximum
speed increase is 199% upon passing a value of 99. If
GetEffectInteger is called for this effect with the second
field set to zero, that function will return 100 + the speed
increase from this effect.
effect EffectNegativeLevel(

int nNumLevels,
int bHPBonus = FALSE)

The effect lowers the subject's class levels by nNumLevels

levels. This is only valid for values between 1 and 100.
Example: 'nw_s0_enedrain'.
effect EffectNWN2ParticleEffectFile(

string sDefinitionFile)
This function should create a particle emitter based upon

the definition file sDefinitionFile.
effect EffectNWN2SpecialEffectFile(

string sFileName,
object oTarget = OBJECT_INVALID,
vector vTargetPosition =
 [0.0, 0.0, 0.0])

This creates an effect based on a special effects file
sFilename. Valid files include those available under
"Appearance (visual effect)" menu in the creature
properties. See the Effect Files section for brief descriptions
of the individual files, and the function notes for more
details on this call.
effect EffectOnDispel(

float fDelay,
action aOnDispelEffect)

This is intended to be linked to another spell effect via the
EffectLinkEffects routine. When the linked spell effect is
dispelled by an EffectDispelMagic... effect, then the action
script aOnDispelEffect is executed. The fDelay parameter is
undocumented, but would seem to be used for the delay in
seconds before the action is executed.
effect EffectParalyze(

int nSaveDC = -1,
int nSave = SAVING_THROW_WILL,
int nSaveEveryRound = TRUE)

The target of this effect is paralyzed. The saving throw to
avoid this effect is nSave, which is a constant of the type
SAVING_THROW_.... If nSaveEveryRound is true, then
each round the subject can make a save attempt at difficulty
class nSaveDC to escape the effect. Example scripts:
'nw_s0_holdmon' and 'nw_s0_1carrion'.
effect EffectPoison(int nPoisonType)

The subject is poisoned by the toxin nPoisonType, which
is a constant of the form POISON_.... Example script:
'nw_s0_poison'.

The effects of each poison are determined by data in the
matching row of the 'poison.2da' file. Thus,

26

Effects

POISON_DEATHBLADE on row 12 has a Save DC of 20,
causes initial 1d6 Con damage, followed by 2d6 Con
secondary damage. Some of the poisons use scripts to apply
their effects, such as Sassone Leaf Residue which runs
'nw_s0_1sassone'.
effect EffectPolymorph(

int nPolymorphSelection,
int nLocked = FALSE,
int bWildshape = FALSE)

The subject of this effect is polymorphed into the creature
type nPolymorphSelection, which is a global constant of
type POLYMORPH_TYPE_.... The nLocked parameter is
undocumented, but it most likely determines whether the
creature can voluntarily reverse the polymorph. This state
can be obtained with a call to GetPolymorphLocked. If
bWildshape is true, then the polymorph is treated as a
Druid's wild shape ability. Example: 'nw_s0_shapechg'.

When called with this effect, the GetEffectInteger routine
will return the value of the polymorph selection in the first
integer.
effect EffectRegenerate(

int nAmount,
float fIntervalSeconds)

The subject of this effect will recover nAmount of hit point
damage every fIntervalSeconds seconds. For this effect, the
GetEffectInteger routine will return the amount regenerated
for the first integer value and the time interval in
milliseconds with the second integer value. Thus, for
example, if RoundsToSeconds(1) is passed for the interval
in seconds, the second integer value will be 6000. Example
script: 'nw_s0_regen'.
effect EffectRescue(

int nSpellId)
The notes for this routine state that it is a placeholder

effect. The nSpellId is matched against the rescue effect.
This effect is used with the Rescue epic feat, which
provides the 'Rescue' spell ability defined on row #1075 of
'spells.2da'. See the 'nx_s2_rescue' script for details.
effect EffectSanctuary(

int nDifficultyClass)
This effect is used to simulate the sanctuary spell, which

causes other creatures to ignore the target unless they

succeed in a saving throw with a nDifficultyClass difficulty
class. Example: 'nw_s0_sanctuary'.
effect EffectSavingThrowDecrease(

int nSave,
int nValue,
int nSaveType =
 SAVING_THROW_TYPE_ALL)

The target creature suffers a penalty of nValue to all
saving throws nSave, which is a SAVING_THROW_...
constant for fortitude, reflex, will or all. The penalty can be
limited to saving throws against the type nSaveType, which
is a constant SAVING_THROW_TYPE_... and applies to a
particular spell descriptor. Example: 'nw_s1_gazedoom'.
effect EffectSavingThrowIncrease(

int nSave,
int nValue,
int nSaveType =
 SAVINGTHROW_TYPE_ALL,
int bVsSpiritsOnly = FALSE)

This is similar to EffectSavingThrowDecrease, except that
it provides a bonus to saving throws. The additional
parameter bVsSpiritsOnly will limit the effect to saving
throws versus spirits when true. The GetEffectInteger
routine will return the nValue modifier for the first integer
value, nSave value for the second and the nSaveType for
the third. Example script: 'nw_s0_heroism'.
effect EffectSetScale(

float fScaleX,
float fScaleY = -1.0,
float fScaleZ = -1.0)

This effect functions like the Scale property for a creature.
If fScaleY and fScaleZ are left at their default values, all
dimensions are scaled by the fScaleX multiple. Otherwise,
the individual dimensions are scaled by the respective
parameters. There is not a matching EFFECT_TYPE_...
constant. Example: 'nw_s2_enlrgeper'.
effect EffectShareDamage(

object oHelper,
int nAmountShared = 50,
int nAmountCasterShared = 50)

With this effect, the creature oHelper will absorb the
percentage nAmountCasterShared of the damage suffered
by the recipient. The subject of the effect only receives

27

Effects

nAmountShared percent of the total damage. Note that the
two amounts do not need to add up to 100. Any extra
damage vanishes, or any surplus is added to the total
damage. Example: 'nw_s2_guardlord'.
effect EffectSkillDecrease(

int nSkill,
int nValue)

The effect reduces the skill nSkill by the positive integer
nValue, where the skill is a valid SKILL_... constant. If
SKILL_ALL_SKILLS is passed for the skill, then all skills
will receive the same modifier. If GetEffectInteger is called
for this effect, it will return the skill type for the first integer
value and the value for the second.
effect EffectSkillIncrease(

int nSkill,
int nValue)

This will increase the skill nSkill by the positive integer
nValue, where the skill is a valid SKILL_... constant. An
nSkill value of SKILL_ALL_SKILLS will cause all skills to
increase by nValue. Examples: 'nw_s0_lore' and
'nw_s0_heroism'.
effect EffectSpellFailure(

int nPercent = 100,
int nSpellSchool =
 SPELL_SCHOOL_GENERAL)

This effect gives a percentage chance nPercent for spells
in the magic school nSpellSchool to fail, which is a constant
SPELL_SCHOOL_.... This effect is independent of an
arcane spell failure check, so an arcane spell caster can be
subject to both spell failure effects applied in sequence.
effect EffectSpellImmunity(

int nImmunityToSchool)
When a valid constant is passed as nImmunityToSchool,

this effect will provide immunity to spells of that school.
This can be a SPELL_SCHOOL_... constant, a row number
in the 'spells.2da' file, or use SPELL_ALL_SPELLS for
immunity to all spells. Example: 'x0_s0_shield'.
effect EffectSpellLevelAbsorption(

int nMaxSpellLevelAbsorbed,
int nTotalSpellLevelsAbsorbed = 0,
int nSpellSchool =
 SPELL_SCHOOL_GENERAL)

This effect will absorb spells cast at the subject. The

nMaxSpellLevelAbsorbed is the maximum spell level that
can be absorbed. The nTotalSpellLevelsAbsorbed field gives
the total spell levels that can be absorbed, or zero for all
applicable spells. If nSpellSchool is set to a constant
SPELL_SCHOOL_..., only spells in that school will be
absorbed. Example: 'nw_s0_ghostvis' and 'nw_s0_globeinv'.
effect EffectSpellResistanceDecrease(

int nValue)
This effect lowers the recipient's spell resistance by the

positive integer nValue.
effect EffectSpellResistanceIncrease(

int nValue,
int nUses = -1)

This effect increases the recipient's spell resistance by the
positive integer nValue. If nUses is set to a positive integer,
it defines the number of times this effect can be applied to
spell resistance checks before it will end.
effect EffectSummonCopy(

object oSource,
int nVisualEffectId = VFX_NONE,
float fDelaySeconds = 0.0f,
string sNewTag = “”,
int nNewHP = 0,
string sScript = “”)

This creates a duplicate copy of the existing creature
oSource that appears fDelaySeconds seconds after the visual
effect nVisualEffectId is played. If nNewTag is a non-null
string, new creature is assigned that as it's tag; otherwise it
uses the same tag as the original. If nNewHP is non-zero,
the copy will be given that many hit points; otherwise it
gains the starting hit point total of the original. The sScript
can be the name of a script to run by the copy.

The creature copy appears with spells per day and
memorized spells re-initialized. This effect can not make
copies of creatures with their Plot or Immortal properties set
to true.
effect EffectSummonCreature(

string sCreatureResref,
int nVisualEffectId = VFX_NONE,
float fDelaySeconds = 0.0f,
int nUseAppearAnimation = 0)

This creates the creature with the resource reference
sCreatureResref then places it in the party or faction of the

28

Effects

effected target. The creature will appear fDelaySeconds
after the visual effect nVisualEffectId is played. If the
nUseAppearAnimation is 1, the creature will use it's 'appear'
animation. (Some creatures have a second animation for
appearance, which is set with a value of 2.) Example:
'nw_s0_animdead'.
effect EffectSwarm(

int nLooping,
string sCreatureTemplate1,
string sCreatureTemplate2 = “”,
string sCreatureTemplate3 = “”,
string sCreatureTemplate4 = “”)

If nLooping is true, this will create a sequence of creatures
that each replace the previously slain creature. It will cycle
through the list of non-null sCreatureTemplate... parameters
to create the creatures, returning to the sCreatureTemplate1
at the end of the list.
effect EffectTemporaryHitpoints(

int nHitPoints)
This effect creates nHitPoint temporary hit points that can

not be recovered by sleep or healing. Example: 'nw_s0_aid'.
effect EffectTurnResistanceDecrease(

int nHitDice)
The effectiveness of a turn undead attempt is determined

by the number of hit dice of the undead. This causes the
recipient to be subject to turn attempts as though they had
nHitDice fewer hit dice, where nHitDice is a positive
integer.
effect EffectTurnResistanceIncrease

int nHitDice)
The subject becomes more difficult to turn, per the turn

undead ability. They must be turned as though they had
nHitDice additional hit dice, where nHitDice is a positive
integer.
effect EffectVisualEffect(

int nVisualEffectId,
int nMissEffect = FALSE)

This creates the visual effect nVisualEffectId on the target
object. If nMissEffect is true, the effect will be played at a
random position near the effect target. The various effects
correspond to rows in the 'visualeffects.2da' file, and many
have corresponding VFX_* constants. The VFX_DUR_*

constants are effects that are applied with durations.

For this effect, the GetEffectInteger routine will return the
visual effect identifier for the first integer value.

Area of Effect

Area of effect objects are invisible instances that are used
to assign an effect to a region. The following routines can
be used to create and query these objects.
effect EffectAreaOfEffect(

int nAreaEffectID,
string sOnEnterScript = “”,
string sOnHeartbeatScript = “”,
string sOnExitScript = “”,
string sEffectTag = “”)

This creates an effect object in the area of the target
creature, which remains at the location it was applied. Valid
values for nAreaEffectID are the AOE_... constant values. If
strings are passed into any of the sOnEnterScript,
sOnHeartbeatScript and sOnExitScript fields, then the
scripts with these names will be used as event handling
scripts by the effect object. Otherwise, the default values for
those fields are used, as defined in the 'vfx_persistent.2da'
file, with the row matching the value of nAreaEffectID.2
The sEffectTag can be passed to the object, allowing it to be
referenced from a script via it's tag.

For a spell effect, the convention for the script names is to
use the spell impact script name (or something similar to it)
followed by "a", "b" and "c", respectively. See for example,
the 'nw_s0_bladebar', 'nw_s0_acidfog', and 'nw_s0_silence'
AOE scripts.
object GetAreaOfEffectCreator(

object oAoEObject = OBJECT_SELF)
If oAoEObject is an area of effect object, this will return

the creating object.
int GetAreaOfEffectDuration(

object oAoEObject = OBJECT_SELF)
If oAoEObject is an area of effect object, this will return

it's duration type DURATION_TYPE....

2 Note that the name in the ENTRY column is similar to the
AOE_* constants, except that the 'AOE' prefix is replaced by
'VFX' in the LABEL column.

29

Effects

int GetAreaOfEffectSpellId(
object oAoEObject = OBJECT_SELF)

If oAoEObject is an area of effect object, this will return
the spell identifier that created the object.
object GetFirstInPersistentObject(

object oPersistentObject =
 OBJECT_SELF,
int nResidentObjectType =
 OBJECT_TYPE_CREATURE,
int nPersistentZone =
 PERSISTENT_ZONE_ACTIVE)

This will return the first object within the boundary of the
object oPersistentObject that matches the object type
nResidentObjectType, which is an OBJECT_TYPE_...
constant. Typically this is used for an Area of Effect object.
An example of a persistent object is a trigger, so you can
use this to return the first object in a trigger. The parameter
nPersistentZone parameter is no longer used.
object GetNextInPersistentObject(

object oPersistentObject =
 OBJECT_SELF,
int nResidentObjectType =
 OBJECT_TYPE_CREATURE,
int nPersistentZone =
 PERSISTENT_ZONE_ACTIVE)

Each time this is called, it returns the next object within
the boundaries of the persistent object oPersistentObject
that matches the type nResidentObjectType, which is an
OBJECT_TYPE_... constant. This list is initialized by a call
to GetFirstInPersistentObject using the same parameters.
The parameter nPersistentZone parameter is no longer used.

Cutscene Effects

The following effects are intended for use with cutscenes,
and they can not be resisted.
effect EffectCutsceneDominated()

The subject of this effect becomes dominated.
effect EffectCutsceneGhost()

The effect subject is able to walk through other creatures
without collision.
effect EffectCutsceneImmobilize()

This will paralyze the legs of the effect target, preventing

from walking. The subject is otherwise unaffected.
Example: 'nw_s0_rejuvcocoon'.
effect EffectCutsceneParalyze()

This will automatically paralyze the subject creature.

30

Environment

Environment

Although the patched toolset provides fields for setting the
weather conditions in an area, currently the weather routines
appear to have no ability to change the settings. The settings
are fixed at whatever they are set to during module save.
int GetWeather(

object oArea,
int nWeatherType)

This call returns the weather settings for the area oArea.
The parameter nWeatherType is a WEATHER_TYPE_...
constant to be queried. The function returns a constant of
type WEATHER_POWER_....
void ResetNWN2Fog(

object oTarget,
int nFogType)

If the fog has been modified, this call will restore the fog
settings to the initial value set for the area oTarget, or for all
areas of oTarget is the module. The nFogType parameter is
one of the FOG_TYPE_... constants that corresponds to one
of the Day/Night Cycle Stage array indices. See the
SetNWN2Fog command.
void SetFog(

object oTarget,
int nFogType,
int nColor,
float fFogStart,
float fFogEnd,
float fFarClipPlaneDistance)

See the SetNWN2Fog command.
void SetNWN2Fog(

object oTarget,
int nFogType,
int nColor,
float fFogStart,
float fFogEnd)

This command is intended to change the fog settings for
an area oTarget, or for all areas if oTarget is the module.
The change can be reverted using the ResetNWN2Fog
command. Note: when I tested this, the new fog settings
only came into effect after I re-entered the area.

The nFogType is a constant FOG_TYPE_... that
corresponds to one of the Day/Night Cycle Stage array

indices. Thus, FOG_TYPE_NWN2_SUNRISE sets the fog
for the sunrise time slot. The nColor is an integer that
encodes a red-green-blue color setting. The fog will begin at
the distance fFogStart, reaches maximum color at the
distance fFogEnd and clips sight beyond
fFarClipPlaneDistance.

Note that you can use the HexStringToInt function in
ginc_math to convert a six-character hex string color code
to an integer value suitable for passing into nColor.

The documentation for this command is identical to
SetFog, except the latter list a fFarClipPlaneDistance
parameter, which is the distance where sight is clipped.
void SetWeather(

object oTarget,
int nWeatherType,
int nPower =
 WEATHER_POWER_MEDIUM)

This routine is intended to set the weather in an area
oTarget. If oTarget is a module, the notes state it will set
the weather on all areas in that module. The nWeatherType
argument is a WEATHER_TYPE_... global constant, while
nPower is a constant WEATHER_POWER_....

Lighting
void SetLightActive(

object oLight,
int bActive)

If oLight is a Light object, this will set the active state to
the boolean bActive. Unfortunately there is not an
equivalent GetLightActive call, so if you want to use this
command to manage the state of the Light placeables in an
area, you will need to store the state of the Light as a local
boolean variable then update the variable with each call.

Note that a known bug causes the 'Tag' strings for 'Light'
placeables not to be retained in the save file. This can be a
problem for scripts that need to control lights with specific
tags in an area using the SetLightActive call (across
multiple game sessions). A work-around is to use the
SetLocalObject command to store 'Light' placeables as local
Object variables on the Area. These variables are stored
during a save, so when the game is reloaded these variables
can be used to access the lights.

31

Environment

The following calls made no appreciable change that I
could detect.
• GetTileMainLight1Color

• GetTileMainLight2Color

• GetTileSourceLight1Color

• GetTileSourceLight2Color

• RecomputeStaticLighting

• SetTileMainLightColor

• SetTileSourceLightColor

Music

The following routines are used to manage the music
tracks played in an area. The individual tracks are row
numbers in the 'ambientmusic.2da' file. Thus, for example,
the daytime music menu pick 'NWN – Aarin Gend'
corresponds to row 53: 'mus_theme_argend'.
void MusicBackgroundChangeDay(

object oArea,
int nTrack)

This changes the daytime background music track for the
area oArea to nTrack.
void MusicBackgroundChangeNight(

object oArea,
int nTrack)

This changes the night time background music track for
the area oArea to nTrack.
int MusicBackgroundGetBattleTrack(

object oArea)
This call returns the current battle track number for the

area oArea.
int MusicBackgroundGetDayTrack(

object oArea)
This call returns the current daytime track number for the

area oArea.
int MusicBackgroundGetNightTrack(

object oArea)
This call returns the current night time track number for

the area oArea.

void MusicBackgroundPlay(
object oArea)

This call tells the game to play the background music for
the area oArea.
void MusicBackgroundSetDelay(

object oArea,
int nDelay)

For area oArea, this sets the delay nDelay in milliseconds
between the end of a background music track and the time it
begins playing the track.
void MusicBackgroundStop(

object oArea)
Stop playing the background music for area oArea.

void MusicBattleChange(
object oArea,
int nTrack)

This changes the battle music for the area oArea to the
track nTrack.
void MusicBattlePlay(

object oArea)
This causes the current battle music for the area oArea to

be played.
void MusicBattleStop(

object oArea)
This stops the battle music for the area oArea.

Sounds
void AmbientSoundChangeDay(

object oArea,
int nTrack)

The ambient daytime track for area oArea is changed to
nTrack. The tracks are listed in the 'ambientsound.2da' file.
void AmbientSoundChangeNight(

object oArea,
int nTrack)

The ambient night time track for area oArea is changed to
nTrack.
void AmbientSoundPlay(object oArea)

This turns on the ambient sound for the area oArea.

32

Environment

void AmbientSoundSetDayVolume(
object oArea,
int nVolume)

This sets the ambient daytime track volume in area oArea
to nVolume. Unlike the setting in the area properties, valid
values for nVolume are zero to 100.
void AmbientSoundSetNightVolume(

object oArea,
int nVolume)

This sets the ambient daytime track volume in area oArea
to nVolume. Valid values for nVolume are zero to 100.
void AmbientSoundStop(object oArea)

This turns off the ambient sound for the area oArea.
float GetDialogSoundLength(

int nStrRef)
For a sound used for dialogue, nStrRef, this will return the

length of the wave file in seconds.
int GetSoundFileDurationLength(

string sSoundFile)
This will return the number of milliseconds needed to play

the sound file sSoundFile. If the file is invalid, this will
return 0.
float GetStrRefSoundDuration(

int nStrRef)
This will return the number of seconds needed to play the

sound file identified by string reference nStrRef. If the
identifier is invalid, this will return 0.
void PlaySound(

string sSoundName,
int bPlayAs2D = FALSE)

This should cause the sound sSoundName to be played
from the location of the object that calls it. If bPlayAs2D is
true, this will play the sound two-dimensionally, rather than
using 3D positional audio.
void PlaySoundByStrRef(

int nStrRef,
int nRunAsAction = TRUE)

If there is a sound associated with the string reference
nStrRef, this will play it from the position of the object that
calls it. If the nRunAsAction is set to false, the sound is
played instantly rather than as a queued action.

void SetSoundSet(
object oCreature,
int nSoundSet)

This routine changes the sound set for the creature
oCreature to the row nSoundSet in the 'soundset.2da' file.
These rows correspond to the items in the Sound Set
property menu for a creature blueprint.
void SoundObjectPlay(object oSound)

If oSound is a sound object, this routine will cause the
object to play its sounds. See SoundObjectStop.
void SoundObjectSetPosition(

object oSound,
vector vPosition)

This routine changes the location of the sound oSound to
the vector location vPosition in the current area.
void SoundObjectSetVolume(

object oSound,
int nVolume)

This call sets the volume of the sound object oSound to the
value nVolume, which should be an integer between 0 and
127.
void SoundObjectStop(object oSound)

This causes the sound object oSound to cease playing its
sounds. See SoundObjectPlay.

33

Events and Scripts

Events and Scripts

Events are conditions in the game that can trigger a
compiled script listed in the Scripts properties of an object.
These scripts are referred to as event handlers. The event
type is associated with an identifier, with a value matching
one of the following constant types as appropriate for the
object type:

• CREATURE_SCRIPT_ON_...
• SCRIPT_AOE_ON_...
• SCRIPT_AREA_ON_...
• SCRIPT_DOOR_ON_...
• SCRIPT_ENCOUNTER_ON_...
• SCRIPT_MODULE_ON_...
• SCRIPT_PLACEABLE_ON_...
• SCRIPT_STORE_ON_...
• SCRIPT_TRIGGER_ON_...

However, some of the script types are missing constants.
Thus, there is no constant for a creature's 'On Perception' or
'On Conversation' property fields.
void ExecuteScript(

string sScript,
object oTarget)

This call causes the object oTarget execute the sScript, then
return to the current script. The script must have been
compiled in the module or else nothing will happen.
int GetCustomHeartbeat(object oTarget)

If a custom heartbeat was set on the object oTarget using
the SetCustomHeartbeat routine, this will return the
heartbeat interval as a number of milliseconds. If no custom
heartbeat has been set, it will return 0.
void SpawnScriptDebugger()

If the game is configured to run the Script Debugger, this
call will trigger the debugger. For more details, see the
Debugging section in the first volume.
void SetCustomHeartbeat(

object oTarget,
int nMSeconds)

Normally the heartbeat interval is 6 seconds. This routine
will change the heartbeat interval for the object oTarget to
nMSeconds milliseconds. The target must be a creature or

placeable for this to have any effect. For creatures, a
random time interval of up to a second is added to the
allotted heartbeat interval. The command notes point out
that applying this to many objects will have an impact on
game performance.

Events

event EventActivateItem(
object oItem,
location locTarget,
object oTarget = OBJECT_INVALID)

This returns an event where item oItem is activated with
the target location locTarget and/or target object oTarget.
The event must be triggered via SignalEvent.
event EventConversation()

This returns an event that triggers the conversation script
by the calling object. The event must be triggered via
SignalEvent.
event EventSpellCastAt(

object oCaster,
int nSpell,
int bHarmful = TRUE)

This call returns an event that will cause the 'Spell Cast At'
script to run. The caster is set to oCaster and the spell
nSpell, which is a SPELL_... constant. If bHarmful is true,
the spell is considered harmful. See the Spell section below.
The event must be triggered via SignalEvent.
event EventUserDefined(

int nUserDefinedEventNumber)
Thus routine generates a 'User Defined Event' triggering

event with the type set to nUserDefinedEventNumber. The
event must be triggered via SignalEvent. See the
GetUserDefinedEventNumber routine.
string GetEventHandler(

object oObject,
int nEventID)

For a valid event identifier nEventID, this call will return
the name of the script that the object oObject uses to handle
events of that type. See SetEventHandler.

34

Events and Scripts

void SetCreatureScriptsToSet(
object oCreature,
int nScriptSet)

The creature event handler scripts are organized into sets
within the 'NWN2_ScriptSets.2da' file. This will replace the
creature oCreature's default script with the set on the row
nScriptSet of the 2DA file, which is equal to a constant
SCRIPTSET_*. These scripts will only be used when the
creature would normally run it's default scripts. Thus they
would not be run when the creature is possessed or
dominated.

Pass SCRIPTSET_PLAYER_DEFAULT in nScriptSet for
party roster members.
void SetEventHandler(

object oObject,
int nEventID,
string sScriptName)

This will replace an event handler script of the object
oObject with the compiled script sScriptName. The script to
be replaced is determined by the nEventID parameter. See
GetEventHandler.
void SignalEvent(

object oObject,
event evToRun)

This causes the object oObject to run the event evToRun.

Script Subroutines
int FiredFromPartyTransition()

When executed from an 'On Client Enter' event handling
script, this will return true only if a party entered the area
via the JumpPartyToArea routine.
object GetClickingObject()

This call can be used in an 'On Left Click' or 'On Click'
script to return the object performing the click. This is
identical to the GetEnteringObject call.
object GetFirstEnteringPC()

This can be called in an 'On Client Enter' script to return
the first player character to enter the area, sub-area or
module.
object GetInventoryDisturbItem()

This returns the object that caused the 'On Inventory

Disturbed' script of the caller to be run, such as during a
pick pocket attempt.
int GetInventoryDisturbType()

This returns a INVENTORY_DISTURB_... constant that
gives the type of disturbance that caused the caller's 'On
Inventory Disturbed' script to run.
int GetIsPartyTransition(object oObject)

If oObject is a transition object, this will return true if it
has the 'Party Transition?' property set to true.
int GetLastRestEventType()

When called from a module's 'On Player Respawn' script,
this will return the type of the triggering rest event, as a
constant REST_EVENTTYPE_REST_....
string GetMatchedSubstring(

int nString)
When called from an 'On Conversation' script, this will

return a substring matching the index nString. The total
matches is returned by GetMatchedSubstringsCount. The
listening patterns are established with a SetListenPattern
call using wildcards. A double-asterisk wildcard will match
any pattern.
int GetMatchedSubstringsCount()

In an 'On Conversation' script, this will return the number
of substrings that matched a substring listening pattern.
object GetNextEnteringPC()

Each time this is called in an 'On Client Enter' script, it
will return the next player character to enter the area, sub-
area or module. The list is reset by GetFirstEnteringPC.
int GetUserDefinedEventNumber()

When called in a 'On User Defined Event Script', this will
return the event number associated with the script call.

Perception

See also GetListenPatternNumber and GetLastPerceived.
int GetLastPerceptionHeard()

When called from an 'On Perception' script, this will return
true if the object that triggered the script has been heard.
int GetLastPerceptionInaudible()

When called from an 'On Perception' script, this will return
true if the object that triggered the script has become
inaudible.

35

Events and Scripts

int GetLastPerceptionSeen()
When called from an 'On Perception' script, this will return

true if the object that triggered the script was seen.
int GetLastPerceptionVanished()

When called from an 'On Perception' script, this will return
true if the object that triggered the script has vanished from
sight.

Spell

The following functions can be used in 'Spell Cast At'
event scripts. See also GetLastSpellCaster and the Talents
section.
int GetLastSpell()

This returns the identifier of the spell that was cast. The
result is a SPELL_... constant.
int GetLastSpellCastClass()

This call returns the character class of the spell caster that
cast the spell. The result is a CLASS_TYPE_... constant.
int GetLastSpellHarmful()

This returns true only if the spell that triggered the event
was harmful in nature.
int GetMetaMagicFeat()

When executed in a 'Spell Cast At' script, this will return a
constant METAMAGIC_... that gives the meta-magic type
of the spell.

Triggering Objects
object GetEnteringObject()

This call can be used in an 'On Exit' script property script
to return the object entering the calling sub-area.
object GetExitingObject()

When called from an 'On Exit' script, this will return the
object that left the sub-area.
object GetLastAttacker(

object oAttackee = OBJECT_SELF)
When called from the 'On ... Attacked' script of the

creature, placeable or door oAttackee, this will return the
object that instigated the attack.
object GetLastClosedBy()

When called from an 'On Closed' script for a door or
placeable, this will return the object that closed the door or
placeable.

object GetLastDisarmed()
When called from a trap script, this will return the last

object to disarm the trap.
object GetLastDisturbed()

When called from the event handler script of an object
with an inventory, this will retrieve the last object to disturb
the inventory (such as by a pick pocket skill use).
object GetLastKiller()

This returns the last object to kill the calling object. It
could be called, for example, from the 'On Death' script.
object GetLastLocked()

When called from the script of a door or placeable, this
will return the object that last locked the calling object.
object GetLastOpenedBy()

When called from the script of a door or placeable, this
will return the object that last opened the calling object.
object GetLastPerceived()

When run from an 'On Perception' script, this will return
the object that triggered the event.
object GetLastPlayerDied()

When run from a module's 'On Player Death' script, this
will return the PC that triggered the event.
object GetLastPlayerDying()

When run from a module's 'On Player Dying' script, this
will return the PC that triggered the event.
object GetLastRespawnButtonPresser()

When run from a module's 'On Player Respawn' script,
this will return the PC of the player that triggered the event.
object GetLastSpellCaster()

When run from a 'Spell Cast At' script, this will return the
object that cast the spell. Spells can be cast by creatures,
doors and placeables.
object GetLastUnlocked()

In an Unlock script for a door or placeable, this will return
the object that unlocked the lock.
object GetPCLevellingUp()

In the module's 'On Player Level Up' script, this will return
the PC that is levelling up.
object GetPlaceableLastClickedBy()

In a placeable's 'On Left Click' script, this will return the
player-controlled object that triggered the event.

36

Factions

Factions

Each creature belongs to a faction, which is comparable to
an alliance. Each member of a faction shares a common
attitude toward members of other factions. Thus creatures in
the hostile faction are allied with each other and generally
dislike members of other factions. These routines are used
to control creature membership in factions and the attitudes
of factions toward creatures.

Management

void ChangeFaction(
object oTarget,
object oMemberOfFaction)

This routine will cause the NPC oTarget to change it's
faction to the same as the NPC oMemberOfFaction.
void ChangeToStandardFaction(

object oTarget,
int nStandardFaction)

This call will cause the NPC oTarget to join the faction
nStandardFaction, which must be set to one of the
STANDARD_FACTION_... constants.
void SetFactionLeader(

object oNewLeader)
If oNewLeader is a creature, this routine makes it the

leader of it's faction. This creature becomes the speaker
during a conversation.

Party

A player's party can consist of henchmen, NPC
companions and one or more player-run characters, or PCs.
The companions are selected from a roster of NPCs by the
player, with each roster member being identified by a
unique 10-character name. Each PC is owned by a separate
player, so there is only one PC in a single-player game.

See also JumpPartyToArea, SetCreatureScriptsToSet, the
Associates section and the "ginc_companion" include file.
int AddRosterMemberByCharacter(

string sRosterName,
object oCharacter)

This call will add the existing NPC oCharacter to the

roster of characters that can be added to the player's party.
The string sRosterName is a unique 10-character name that
is used to refer to this character in the other roster calls. The
routine returns true if the addition was successful, or false
on an error. See also AddRosterMemberToParty.
int AddRosterMemberByTemplate(

string sRosterName,
string sTemplate)

This call will add the NPC identified by template
sTemplate to the roster of characters that can be added to
the player's party. The NPC needs to be created in order to
appear in the game world. The string sRosterName is a
unique 10-character name that is used to refer to this
character in the other roster calls. The routine returns true if
the addition was successful, or false on an error. See also
AddRosterMemberToParty.
int AddRosterMemberToParty(

string sRosterName,
object oPC)

This will add the NPC with the roster name sRosterName
to the party belonging to the player character oPC. This
function will fail and return false if the roster member
already belongs to another party. You can test for
availability using GetIsRosterMemberAvailable. Note that
this call is not restricted to the number of NPCs returned by
GetRosterNPCPartyLimit.

If the added roster member is in the current module, it will
be transported to a location near the PC. Otherwise it will
be loaded in using the last saved condition. The faction of
the new party member will be set to match the PC's faction.
void AddToParty(

object oPC,
object oPartyLeader)

In a multi-player game, this will add the player character
oPC to the party being led by oPartyLeader. Only a
maximum of two PCs can be added by this call.
int DespawnRosterMember(

string sRosterName)
The roster member sRosterName is saved to preserve any

changes, then is removed from the game. The command
notes indicate this is the only routine that should be used to
remove roster members from the game. To respawn a roster

37

Factions

member, use the SpawnRosterMember routine.
object GetFirstPC(int iOwnedPC = TRUE)

If iOwnedPC is true, GetFirstPC returns the owned PC in
the first player's list. Otherwise, it returns the first controlled
object in the player's list. See also GetNextPC.
string GetFirstRosterMember()

This returns a string containing the roster name of the first
member of the party roster. See GetNextRosterMember.
int GetIsRosterMember(object oMember)

If the object oMember is a roster member, this routine will
returns true.
int GetIsRosterMemberAvailable(

string sRosterName)
This function returns true only if the member with roster

name sRosterName is available to join the party. It will
return false if the member is claimed by another party or if
the member is unavailable.
int GetIsRosterMemberCampaignNPC(

string sRosterName)
A campaign NPC is persistent across modules, but can not

be chosen as a party member by the player on the party
selection user interface. However, a campaign NPC can be
added to the party by a script. This routine will return true
only if the NPC with the roster name sRostername, is a
campaign NPC. See SetIsRosterMemberCampaignNPC.
int GetIsRosterMemberSelectable(

string sRosterName)
This function returns true if the member sRosterName is

selectable. It may return false if the member is not
selectable for plot reasons, and so forth.
object GetNextPC(int bOwnedPC = TRUE)

Each call to GetNextPC will return an additional PC or
controlled object in the list, depending on whether
bOwnedPC is true or false. Once the list is exhausted,
GetNextPC returns OBJECT_INVALID. The list is reset by
a call to GetFirstPC.
string GetNextRosterMember()

Each time this is called, it returns a string containing the
roster name of the next member of the party roster. The list
can be reset by a call to GetFirstRosterMember.

object GetObjectFromRosterName(
string sRosterName)

When passed a string containing the roster name
sRosterName of a valid roster member, this will return the
game world object that currently represents the roster
member.
int GetPartyMembersDyingFlag()

This returns the campaign boolean 'Party Members Dying'.
string GetPartyMotto()

This call fetches the motto for the party calling this
routine.
string GetPartyName()

This call returns the name of the party calling this routine.
object GetPCSpeaker()

Get the PC that is involved in a conversation. Returns
OBJECT_INVALID on error.
string GetRosterNameFromObject(

object oCompanion)
Returns a string with the roster name of the companion

oCompanion from the roster list. If there is no match, an
empty string is returned.
int GetRosterNPCPartyLimit()

This returns the number of roster NPCs that a player can
add to the party using the party selection screen. This value
can be modified using SetRosterNPCPartyLimit.
void RemoveFromParty(object oPC)

In a multi-p-layer game, this will remove a player
character oPC from the party. See AddToParty.
int RemoveRosterMember(string sRosterName)

If sRosterName is the valid roster name of an NPC, this
routine will remove the name from the roster of selectable
NPCs and return true.
void RemoveRosterMemberFromParty(

string sRosterName,
object oPC,
int bDespawnNPC = TRUE)

If a valid NPC with the sRosterName is currently a
member of the party containing the player character oPC,
this will detach the NPC from the party. If bDespawnNPC
is true, the state of the NPC will be saved and it will be
despawned.

38

Factions

int SetIsRosterMemberCampaignNPC(
string sRosterName,
int bCampaignNPC)

A campaign NPC is persistent across modules, but can not
be chosen as a party member by the player on the party
selection user interface. However, a campaign NPC can be
added to the party by a script. This routine will mark or
clear the campaign NPC status of the NPC with the roster
name sRostername, depending on whether bCampaignNPC
is true or false.
int SetIsRosterMemberSelectable(

string sRosterName,
int bSelectable)

Roster members can be marked as non-selectable, which
prevents them from being selected via the party selection
user interface by the player. This routine will change the
selectability of the NPC with the roster name sRosterName
to the state bSelectable. It will return true only if a matching
roster member was found. Non-selectable NPCs that are
already in the party can not be removed by the player.
void SetRosterNPCPartyLimit(

int nLimit)
By default, a player can add up to three NPCs to a party

using the party selection user interface. This routine will
change the maximum number of selectable NPCs to nLimit.
object SpawnRosterMember(

string sRosterName,
location locAt)

This call will find (or create) an instance of the NPC with
the roster name sRosterName. If successful, the NPC will
appear at the location locAt and the function will return the
object representing the NPC. Otherwise, the function will
return an invalid object.

Query

In the following calls, bMustBeVisible is undocumented
but it presumably restricts the search to visible creatures
when true.
int GetFactionAverageGoodEvilAlignment(

object oFactionMember)
This routine computes the average alignment, along the

good-evil axis, of the faction containing oFactionMember.

The result is an integer that ranges from 0 (evil) to 100
(good).
int GetFactionAverageLawChaosAlignment(

object oFactionMember)
This routine computes the average alignment, along the

law-chaos axis, of the faction containing oFactionMember.
The result is an integer that ranges from 0 (chaotic) to 100
(lawful).
int GetFactionAverageLevel(

object oFactionMember)
This function computes the average class level of the

faction containing oFactionMember.
int GetFactionAverageXP(

object oFactionMember)
This call returns the average number of experience points

for the members of the faction containing oFactionMember.
object GetFactionBestAC(

object oFactionMember =
 OBJECT_SELF,
int bMustBeVisible = TRUE)

This routine returns the creature with the highest armor
class rating among the faction containing oFactionMember.
The bMustBeVisible is undocumented, but it presumably
restricts the search to visible creatures when true.
int GetFactionEqual(

object oFirstObject,
object oSecondObject =
 OBJECT_SELF)

If the objects oFirstObject and oSecondObject belong to
the same faction, then this routine will return true.
int GetFactionGold(

object oFactionMember)
This call is used to determine the total gold being held by

the faction that contains oFactionMember.
object GetFactionLeader(

object oFactionMember)
This call returns the object that is the current leader of the

faction containing oFactionMember. At present this only
works with a party, and it returns an invalid object for other
factions. The party leader is able to choose who to remove
from the party.

39

Factions

object GetFactionLeastDamagedMember(
object oFactionMember =
 OBJECT_SELF,
int bMustBeVisible = TRUE)

This routine returns the creature with the least amount of
damage among the faction containing oFactionMember.
object GetFactionMostDamagedMember(

object oFactionMember =
 OBJECT_SELF,
int bMustBeVisible = TRUE)

This is similar to GetFactionLeastDamagedMember,
except the most damaged member of the faction containing
oFactionMember is returned.
int GetFactionMostFrequentClass(

object oFactionMember)
This call returns a value of type CLASS_TYPE_... that

gives the most common character class type among the
members of the faction containing oFactionMember.
object GetFactionStrongestMember(

object oFactionMember =
 OBJECT_SELF,
int bMustBeVisible = TRUE)

This call returns the object that is the strongest member of
the faction containing oFactionMember. This is based on
class level rather than the Strength attribute.
object GetFactionWeakestMember(

object oFactionMember =
 OBJECT_SELF,
int bMustBeVisible = TRUE)

This call returns the object that is the weakest member of
the faction containing oFactionMember.
object GetFactionWorstAC(

object oFactionMember =
 OBJECT_SELF,
int bMustBeVisible = TRUE)

This routine returns the creature with the lowest armor
class rating among the faction containing oFactionMember.
object GetFirstFactionMember(

object oFactionMember =
 OBJECT_SELF,
int bPCOnly = TRUE)

This returns the first member in the list of creatures of the
faction that contains oFactionMember. If bPCOnly is true,

this will return the first PC in the faction. To find other
faction members, see the GetNextFactionMember routine.
object GetNextFactionMember(

object oFactionMember =
 OBJECT_SELF,
int bPCOnly = TRUE)

This returns the another member in the list of creatures of
the faction that contains oFactionMember. If bPCOnly is
true, this will return the first PC in the faction. This list is
reset by a call to GetFirstFactionMember.

Reputation

The reputation of a creature in a faction is represented by
an integer value between 0 and 100, with high values
indicating a more favorable reputation. A low reputation
can result in hostility and combat. See the Reaction section.
void AdjustReputation(

object oTarget,
object oFactionMember,
int nAdjustment)

The attitude of the faction containing oFactionMember
toward oTarget is adjusted by nAdjustment.
void ClearPersonalReputation(

object oTarget,
object oSource = OBJECT_SELF)

If the creature oTarget has gained a personal reputation
with oSource, this routine will clear the settings.
int GetFactionAverageReputation(

object oSourceFactionMember,
object oTarget)

This call returns the average reputation of the creature
oTarget in the faction containing oSourceFactionMember.
int GetReputation(

object oSource,
object oTarget)

This call will return an integer value that represents how
favorably (or unfavorably) object oSource views object
oTarget. Values from 0 to 10 represent hostility, while 90 to
100 represent friendliness. Values ranging from 11 to 89
indicate a neutral reputation. If either object is invalid, this
call will return -1.

40

Factions

int GetStandardFactionReputation(
int nStandardFaction,
object oCreature = OBJECT_SELF)

This call returns the average reputation of the creature
oCreature in the standard faction nStandardFaction, which
is a STANDARD_FACTION_... constant.
void SetStandardFactionReputation(

int nStandardFaction,
int nNewReputation,
object oCreature = OBJECT_SELF)

This call changes the reputation of the creature oCreature
in the standard faction nStandardFaction to the value
nNewReputation. The reputation is an integer between 0 and
100, inclusive, and the faction is a global constant of the
form STANDARD_FACTION_....

Game Management
int dN(int nNumDice = 1)

Returns the total from rolling an N-sided dice nNumDice
times, where N is 2, 3, 4, 6, 8, 10, 12, 20 or 100. Thus, a call
of d20(3) returns the total of three rolls of a 20-sided dice.
void ActivatePortal(

object oTarget,
string sIPAddress = “”,
string sPassword = “”,
string sWaypointTag = “”,
int bSeamless = FALSE)

This call attempts to send the object oTarget to the server
with the IP address sIPAddress using the login password
sPassword. Alternatively the IP address can be a
alphanumeric resource location, and can include a port
number. If the move is successful, the object will appear at
the waypoint with the tag sWaypointTag. Normally the
client will receive an information panel, but this can be
turned off if bSeamless is set to true.
void BootPC(object oPlayer)

This “boots” the player oPlayer from the server.
void EndGame(string sEndMovie)

This call ends the current game by playing the movie file
sEndMovie then returns all players to the menu interface.
int GetGameDifficulty()

This returns a value giving the game difficulty as a
constant value GAME_DIFFICULTY_....
int GetIsSinglePlayer()

If this game is for a single player only, this returns true.
int GetOnePartyMode()

If this game is running in one party mode, this call will
return true.
int GetPause()

If this returns true, then the game is currently paused.
string GetPCIPAddress(object oPlayer)

For a network name, this call will return the IP address of
the client from which the player oPlayer is connecting to
the server.
string GetPCPlayerName(object oPlayer)

This returns the name of the object oPlayer.

41

Game Management

string GetPCPublicCDKey(object oPlayer)
This returns the public portion of the CD authentication

key that the player oPlayer used to log on to a game.
object GetPrimaryPlayer()

In a multi-player game, the primary player is the player
who is hosting the game. This routine will return the object
representing the primary player. Note that a game may not
have a primary player, such as when the hosting player is
participating only as the DM.
location GetStartingLocation()

This routine returns the starting location of the current
module.
int GetTalkTableLanguage()

This call returns a LANGUAGE_... constant that identifies
the language being used in the game's talk table file.
void SetCustomToken(

int nCustomTokenNumber,
string sTokenValue)

This call will assign the string value sTokenValue to each
use of the token <CUSTOM#####>, where 'XXXXX' is the
string representation of nCustomTokenNumber. This will
cause instances of the token, such as in conversations or
journal entries, to be automatically converted to the string
value. For consistency, this call is best made in during
module startup, prior to the first use of the token.

Custom token numbers 0-9 are used by Bioware, so higher
numbers should be chosen. (It's probably best to use a three
digit number to avoid conflicts.)
void SetCameraMode(

object oPlayer,
int nCameraMode)

For a player-controlled character oPlayer, this will set the
current viewing mode to nCameraMode, which is a
CAMERA_MODE_... constant. The player can
immediately override this setting with a shift-mouse drag.
Overuse of this command will probably prove annoying to
the player. See also StoreCameraFacing.
void SetPause(int bState)

This can be used to set the pause state of the game to the
boolean bState.

Commands
void ActionDoCommand(action aActionToDo)

This will add the action aActionToDo to the execution
stack of the object making the call. Thus, if there are other
actions in the stack, those will be executed first. This
function differs from AssignCommand in that the subject
can not be set; only the action.
void AssignCommand(

object oSubject
action aActionToAssign)

This call will assign the action aActionToAssign to the
object oSubject. The action is appended to the current action
stack for the object. If the aActionToAssign is a command,
it is run with oSubject set to OBJECT_SELF. This is useful
for executing certain commands against oSubject such as
ClearAllActions. If aActionToAssign is null, no command is
assigned.
void ClearAllActions(

int nClearCombatState = FALSE)
This call will clear the action queue of the caller. Despite

the void return value, this call can be inserted as an action in
the AssignCommand call. If nClearCombatState is true, it
will also clear the combat state on a creature. This is called
by the ga_clear_actions script.
void DelayCommand(

float fSeconds,
action aDelayedAction)

This call will cause an action aDelayedAction to take
effect after fSeconds have passed. The notes for this
function recommend that effects should be passed to the
aDelayedAction function call as a variable rather than as an
effect function within the DelayCommand arguments.

The script notes mention that a DelayCommand call
causes an effect to lose its spellID, allowing effects to stack.
See 'x2_s1_suckbrain' for example.
void DismountObject(

object oDismountingObject,
object oObjectToDismount)

The object oDismountingObject dismounts itself from the
object oObjectToDismount. See MountObject.

42

Game Management

int GetCommandable(
object oTarget = OBJECT_SELF)

Return true if the object oTarget's action stack can be
modified.
int GetCurrentAction(

object oObject = OBJECT_SELF)
This will return a constant ACTION_... that gives the

current action being executed by the object oObject.
int GetLastAssociateCommand(

object oAssociate = OBJECT_SELF)
This call returns the last command issued to the associate

oAssociate. See GetAssociate.
int GetNumActions(object oObject)

This will return the current number of actions that are
queued up for the object oObject to execute.
void MountObject(

object oMountingObject,
object oObjectToMount)

The object oMountingObject dismounts itself from the
object oObjectToMount. See DismountObject.
void SetCommandable(

int bCommandable,
object oTarget = OBJECT_SELF)

If bCommandable is true, allow the object oTarget's action
stack to be modified. Otherwise, disallow modification of
the action stack. This call can be passed as an action.

Two-Dimensional Arrays

These routines manage access to the two-dimensional
array files, which is a NWN2 data file with a '.2da' suffix.
The name of the file that is passed as an argument should
match a file name from the 'Pick 2DA' browser. However, it
should not include the '.2da' suffix.
void Clear2DACache(

string s2DAname = “”)
When a 2DA file is queried, it will be loaded into a

memory cache. This function will clear out the cache for the
2DA file s2DAname, or all 2DA files if the string is empty.

string Get2DAString(
string s2DA,
string sColumn,
int nRow)

This will return the value from a cell in the 2DA file
named s2DA. The cell is on the row matching nRow and
the column with the name matching sColumn. The column
names can be found by opening the 2DA file using the '2DA
File...' pick from the View menu. If the cell does not exist or
the 2DA file is not found, a null string is returned.

The notes for this routine recommend not calling this
routine inside a loop; most likely for performance reasons.
int GetNum2DAColumns(string s2DAname)

If the 2DA file s2DAname is found, this call will return the
number of columns and will cache the data (if it isn't
already cached). Otherwise it will return -1.
int GetNum2DARows(string s2DAname)

If the 2DA file s2DAname is found, this call will return the
number of rows and will cache the data (if it isn't already
cached). Otherwise it will return -1.

File Updates
void DoSinglePlayerAutoSave()

If the current game is a single-player game, this will cause
an auto-save.
void ExportAllCharacters()

All currently active characters of players in the game are
saved to their corresponding repositories.
void ExportSingleCharacter(

object oPlayer)
The character belonging to the player oPlayer is saved to

it's repository.
void PrintFloat(

float fFloat,
int nWidth = 18,
int nDecimals = 9)

This call writes a formatted floating point value fFloat to
the log file. The output value has a width of nWidth
characters and nDecimals decimals.
void PrintInteger(int nInteger)

This function will write the integer nInteger as a string in

43

Game Management

the log file.
void PrintObject(object oObject)

This function prints the object identifier of object oObject
to the log file.
void PrintString(string sString)

This will write the string sString to the log file.
void PrintVector(

vector vVector,
int bPrepend)

This call will print the vector vVector to the log file. If
bPrepend is true, “PRINTVECTOR:” will be inserted
before the vector.
void WriteTimestampedLogEntry(

string sLogEntry)
This routine will append a time-stamped copy of the string

sLogEntry to the log file.

Geometry

These include math functions and game area geometry
calls.
float FeetToMeters(float fFeet)

A distance fFeet, in units of feet, is passed to this call, and
it returns the equivalent distance in meters. There is no
equivalent call to convert meters to feet, but you can
multiply the number of meters by 3.28.
float GetDistanceBetween(

object oObjectA,
object oObjectB)

This returns the separation in metres of object oObjectB
from object oObjectA. If either of the objects is invalid, this
routine will return 0.0f.
float GetDistanceBetweenLocations(

location locA,
location locB)

This call will return the distance from location locA to
location locB.
float GetDistanceToObject(

object oObject)
This returns the range to the object oObject from the

object making the call.
float GetFacing(object oTarget)

This returns the direction that a valid object oTarget is
facing as a number of degrees anti-clockwise from due east.
float GetFacingFromLocation(

location locAt)
This obtains the orientation information from the location

locAt. The result is a value between 0.0 and 360.0, giving
the number of degrees anti-clockwise from due east.
vector GetPositionFromLocation (

location locAt)
Given a location locAt, this will return the vector

component within the location's area.
void SetFacing(

float fDirection,
int bLockToThisOrientation =
 FALSE)

The object calling this routine will be turned to face the
direction fDirection, which is the number of degrees anti-

44

Geometry

clockwise from due east. If this is called during a
conversation and bLockToThisOrientation, then the facing
of the calling object will be left at this facing for the
remainder of the conversation.
void SetFacingPoint(

vector vTarget,
int bLockToThisOrientation =
 FALSE)

This functions like the SetFacing routine, except the
calling object is turned in the direction of the vector
vTarget. To face toward an object, use the GetPosition call
to return the vector position of that object.

Position

vector AngleToVector(float fAngle)
This functions accepts an angle fAngle in degrees and

converts it to a unit vector. This vector can then be scaled
by multiplying it with a floating point scalar.
location CalcPointAwayFromPoint(

location locPoint,
location locAwayFromPoint,
float fDistance,
float fAngularVariance,
int bComputeDistFromStart)

This routine can be used to generate a new location that is
in the opposite direction of locAwayFromPoint from the
perspective of locPoint. If bComputeDistFromStart is true,
then the value of fDistance determined how far away the
new location will be placed from locPoint, (Per the notes,
this can be a negative value, so that location is in the
opposite direction.) If bComputeDistFromStart is false, then
fDistance is measured from locAwayFromPoint. The
parameter fAngularVariance is a value in degrees between 0
to 180, and it applies a random angle to the direction.
location CalcSafeLocation(

object oCreature,
location locTest,
float fSearchRadius,
int bWalkStraightLineRequired,
int bIgnoreTestLocation)

This routine will try to find a location near locTest where
the creature oCreature can stand. This search is limited to

the radius fSearchRadius around locTest. If the
bWalkStraightLineRequired is true, then this routine will
only return a location that the creature can walk to. If the
bIgnoreTestLocation argument is true, then locTest will be
excluded from the possible safe locations.

If this call is unsuccessful then the routine will instead
return the current location of the creature oCreature.
location GetLocation(object oObject)

Returns a location describing the position of the object
oObject.
location Location(

object oArea,
vector vPosition,
float fOrientation)

This routine will generate a location in the area oArea that
is offset from coordinates [0.0, 0.0, 0.0] by an amount that
is specified by the vector vPosition. The fOrientation
parameter is an angle in degree relative to North for the
area. Thus a value of 180.0f will face South.
vector Vector(

float x = 0.0f,
float y = 0.0f,
float z = 0.0f)

This represents a vector offset. The vector parameters x, y
and z are equivalent to the values in the 'Position No Snap'
field upon selecting an item or placeable.
float VectorMagnitude(vector vVector)

This returns the magnitude (length) of the vector vVector.
If this is the vector between two locations, the magnitude is
the distance between the locations.
vector VectorNormalize(vector vVector)

This converts the vector vVector to a vector of unit length.
Multiplying the normalized vector times the magnitude of
vVector will produce the original vector.
float VectorToAngle(vector vVector)

This routine converts the vector vVector to an angle.

Math

The math functions are accurate to about 6-8 digits, which
should be good enough for scripting purposes.

45

Geometry

int abs(int nValue)
Returns the absolute value of nValue. That is, if nValue is

negative it returns -nValue; otherwise it returns nValue.
float acos(float fValue)

Returns the inverse cosine (arccosine) of fValue. That is,
cos(acos(fValue)) = fValue. This function will return an
angle in degrees. Valid values for fValue are in the range: -1
≤ fValue ≤ 1. Any other input will cause acos to return 0.
float asin(float fValue)

Returns the inverse sine (arcsine) of fValue. That is, sin(
asin(fValue)) = fValue. This function will return an angle
in degrees. Valid values for fValue are in the range: -1 ≤
fValue ≤ 1. Any other input will cause asin to return 0.
float atan(float fValue)

Returns the inverse tangent (arctan) of fValue. That is tan(
atan(fValue) = fValue. This function will return an angle in
degrees.
float cos(float fValue)

Returns the cosine of fValue, which has a value in degrees.
float fabs(float fValue)

Returns the absolute value of fValue, That is, it returns
fValue if it is positive, otherwise it returns -fValue.
float log(float fValue)

Returns the natural (base e) logarithm of fValue. For the
base 10 logarithm, multiply by log10(e) = 0.434294.
float pow(float fValue, float fExponent)

Returns fValue raised to the power of fExponent. If both
fValue and fExponent are zero, it returns zero.
float sin(float fValue)

Returns the sine of fValue, which has a value in degrees.
float sqrt(float fValue)

Returns the square root of fValue. This is equivalent to
pow(fValue, 0.5f).
float tan(float fValue)

Returns the tangent of fValue, which has a value in
degrees.
float YardsToMeters(float fYards)

Returns the equivalent number of metres for the distance
fYards in yards.

Interaction

This section covers routines that manage the interaction
between creatures and other objects, including combat and
conversation.
int GetTurnResistanceHD(

object oUndead = OBJECT_SELF)
If oUndead is a creature with an undead racial type, this

call will return the number of hit dice the creature has for
the purpose of resisting a turn undead effect.

Collision

int GetBumpState(object oCreature)
This returns the bump state of the creature oCreature as a

value matching a BUMPSTATE_... constant. This
determines whether the target will move aside when another
creature is moving through the target's position. See
SetBumpState.
int GetCollision(

object oTarget)
This will get the collision state for a creature or placeable

oTarget. See SetCollision.
int GetScriptHidden(

object oCreature)
This call will return the state of the boolean 'Script Hidden'

property for a valid creature oCreature.
void SetBumpState(

object oCreature,
int nBumpState)

This call will set the bump state property of a creature
oCreature to the value nBumpState, which is a constant of
the form BUMPSTATE_.... See GetBumpState.
void SetCollision(

object oTarget,
int bCollision)

If oTarget is a creature, this will set the collision boolean
to bCollision. Creatures do not count for collision when
they are set to Script Hidden.

46

Interaction

void SetScriptHidden(
object oCreature,
int bHidden,
int bDisableUI = TRUE)

This routine sets the 'Script Hidden' property of a creature.
When bHidden is true, the creature oCreature will not
render, do not count when determining collision and can not
be selected by a player on a client. Otherwise the creature
appears in the game and can be interacted with normally. If
bDisableUI is true, the AI is disabled while the creature is
hidden.

Conversation
int BeginConversation(

string sResRef = “”,
object oObjectToDialog =
 OBJECT_INVALID,
int bPreventHello = FALSE)

This command begins a conversation. If a resource
reference string sResRef is passed, it will be used for the
conversation dialog. Otherwise the default dialog is used.
The oObjectToDialog can be used to specify the creature
that will own the conversation, or it will default to the
creature that triggered the event. Setting bPreventHello will
prevent the speaker from saying it's hello message.
int GetCanTalkToNonPlayerOwnedCreatures(

object oObject)
This returns true only if the object oObject is able to hold

a conversation with creatures that have not been created by
a player. This is set by the 'Can Talk to Non-Player Owned
Creatures?' property field.
string GetNodeSpeaker()

Within a Conditional script of a conversation, this will
return the tag of the current speaker.
object GetLastSpeaker()

In an Condition or Action script of a conversation, this
will return the object of the creature with whom the calling
character is conversing.
object GetPCSpeaker()

In an Condition or Action script of a conversation, this
returns the participating PC.

int IsInConversation(
object oObject)

If the object oObject is currently in a conversation, this
will return true.
int IsInMultiplayerConversation(

object oObject)
If the object oObject is currently in a conversation that is

flagged as multiplayer, this will return true.
void SetCanTalkToNonPlayerOwnedCreatures(

object oObject,
int bCanTalk)

This routine can be used to set the 'Can Talk to Non-
Player-Owned Creatures?' property. If bCanTalk is false,
then the object oOwned is only allowed to talk to creatures
that are owned by a player. If a creature is controlled but not
owned by a player, then the conversation is switched to the
player-controlled creature.
void SpeakOneLinerConversation(

string sDialogResRef = “”,
object oTokenTarget =
 OBJECT_INVALID,
int nTalkVolume =
 TALKVOLUME_TALK)

This causes the calling object to speak the single line
conversation named sDialogResRef. The line will appear as
a string above the creature that floats upwards and fades. If
the conversation contains tokens (strings inside '<' and '>'
character pairs), their values are inserted based on the
creature oTokenTarget. The nTalkVolume parameter is a
TALK_VOLUME_... constant that sets the conversation
volume. This determines how close a listener needs to be in
order to see the message.

Cutscene

The 'ginc_cutscene' has additional routines for managing
conversation cutscenes. See also the ActionPauseCutscene
and EffectCutscene... routines.
void AssignCutsceneActionToObject(

object oObject,
action aAction)

This passes the action aAction to the object oObject, along
with a cutscene flag. An ActionPauseCutscene can pause a

47

Interaction

dialogue, and the conversation will not resume until all
actions with cutscene flags have been completed.
float GetCutsceneCameraMoveRate(

object oCreature)
This routine will return the movement rate of the camera

within the cutscene for the creature oCreature. The result is
a floating point value between 0.1 and 2.0.
object GetLastPCToCancelCutscene()

In a multi-player game, a player can cancel from a
cutscene. This returns the last player-owned character to do
this.
int GetNumCutsceneActionsPending()

This returns the number of cutscene actions currently
queued up. The notes suggest using this for troubleshooting
why a cutscene pause did not resume when expected.
void RestoreCameraFacing()

This will restore the camera to the facing that was stored
into memory using StoreCameraFacing, then purge the
facing information. If no camera facing information has
been stored then nothing will happen.
void SetCameraFacing(

float fDirection,
float fDistance = -1.0f,
float fPitch = -1.0f,
int nTransitionType =
 CAMERA_TRANSITION_TYPE_SNAP)

This will turn the camera to a different facing. The ground
surface is an x-y plane with positive x facing east and
positive y pointing north. The direction fDirection is the
number of degrees anti-clockwise from the east, so a value
of 90.0f is due north. The fDistance is the number of meters
away from the location being filmed. The angle of the
camera to the ground is set via the fPitch value, with 1.0f
being almost directly overhead and 89.0f being nearly
parallel to the ground. The nTransitionType determines how
rapidly the camera switches to the new setting from the
previous scene, and is a
CAMERA_TRANSITON_TYPE_... constant.

Note that passing in a value of -1.0 for distance or pitch
will cause the camera to retain its previous settings.

void SetCameraHeight(
object oPlayer,
float fHeight = 0.0f)

This causes the camera to be at the height fHeight for the
player oPlayer. A height of zero will restore the camera to
the the player's default racial height.
void SetCutsceneCameraMoveRate(

object oCreature,
float fRate)

This routine will set the movement rate fRate of the
camera within the cutscene for the creature oCreature. A
valid movement rate is a value between 0.1 and 2.0.
void SetCutsceneMode(

object oCreature,
int nInCutScene = TRUE)

If nInCutScene is true, this places the creature into
cutscene mode. Within cutscene, the player can not use GUI
or camera controls. Passing in false for the nInCutScene
paraeter removes the cutscene mode from the creature.
void SetLookAtTarget(

object oObject,
vector vTarget,
int nType = 0)

The notes for this routine say it is mainly intended to fix
bugs in cutscenes that control where the creature oObject is
looking. This causes the creature oObject to look along the
vector vTarget. The nType parameter is not implemented.
void SetOrientOnDialog(

object oCreature,
int bActive)

By default a creature's orientation will be modified during
a conversation so that it is facing a speaker. Passing false in
the bActive parameter will turn off this behavior for the
creature oCreature.
void StoreCameraFacing()

This stores the current camera facing in memory. It can be
restored using RestoreCameraFacing.

Reaction

These routines are used to measure and manage how an
individual creature feels about another creature. See also the
Factions section.

48

Interaction

int GetIsEnemy(
object oTarget,
object oSource = OBJECT_SELF)

This will return true only if the object oSource considers
oTarget an enemy, based solely on faction membership and
personal reputation.
int GetIsFriend(

object oTarget,
object oSource = OBJECT_SELF)

This will return true only if the object oSource considers
oTarget a friend, based solely on faction membership and
personal reputation.
int GetIsNeutral(

object oTarget,
object oSource = OBJECT_SELF)

This will return true only if the object oSource considers
oTarget as neutral, based solely on faction membership and
personal reputation.
int GetIsReactionTypeFriendly(

object oTarget,
object oSource = OBJECT_SELF)

This routine takes into account reputation and the area's
PvP setting to determine if the object oSource has a friendly
reaction toward oTarget. If both are PCs, this will also
factor in the oSource object's like or dislike setting for
oTarget. See GetIsFriend.
int GetIsReactionTypeNeutral(

object oTarget,
object oSource = OBJECT_SELF)

This routine takes into account reputation and the area's
PvP setting to determine if the object oSource has a neutral
reaction toward oTarget. If both are PCs, this will also
factor in the oSource object's like or dislike setting for
oTarget. See GetIsNeutral.
int GetIsReactionTypeHostile(

object oTarget,
object oSource = OBJECT_SELF)

This routine takes into account reputation and the area's
PvP setting to determine if the object oSource has a hostile
reaction toward oTarget. If both are PCs, this will also
factor in the oSource object's like or dislike setting for
oTarget. See GetIsEnemy.

void SetIsTemporaryEnemy(
object oTarget,
object oSource = OBJECT_SELF,
int bDecays = FALSE,
float fDurationInSeconds =
 180.0f)

This causes oSource to become an enemy of oTarget
based on personal reputation. If bDecays is true, the enmity
will decay over a time interval of fDurationInSeconds. The
animosity will continue as long as the faction reputation
plus the total personal reputation of oSource is at or below
REPUTATION_TYPE_ENEMY.
void SetIsTemporaryFriend(

object oTarget,
object oSource = OBJECT_SELF,
int bDecays = FALSE,
float fDurationInSeconds =
 180.0f)

This causes oSource to become a friend of oTarget based
on personal reputation. If bDecays is true, the friendship
will decay over a time interval of fDurationInSeconds. The
friendship will continue as long as the faction reputation
plus the total personal reputation of oSource is at or above
REPUTATION_TYPE_FRIEND.
void SetIsTemporaryNeutral(

object oTarget,
object oSource = OBJECT_SELF,
int bDecays = FALSE,
float fDurationInSeconds =
 180.0f)

This causes oSource to become neutral toward oTarget
based on personal reputation. If bDecays is true, the
neutrality will decay over the interval fDurationInSeconds
seconds. The neutrality will continue as long as the faction
reputation plus the total personal reputation of oSource is
above REPUTATION_TYPE_ENEMY and below
REPUTATION_TYPE_FRIEND.
void SetPCDislike(

object oPlayer,
object oTarget)

This causes the player oPlayer and object oTarget to
dislike each other.

49

Interaction

void SetPCLike(
object oPlayer,
object oTarget)

This causes the player oPlayer and object oTarget to like
each other.
void SurrenderToEnemies()

When this is run by an NPC, this will cause all NPCs
within a 10 metre radius to cease their activities. Any
enemies of the NPC within this radius will assume a neutral
attitude toward the NPC.

Saving Throws
int GetFortitudeSavingThrow(

object oTarget)
If oTarget is a creature, door or placeable, this routine will

return the object's base fortitude saving throw. A zero will
be returned for an invalid object. See FortitudeSave and
SetFortitudeSavingThrow.
int GetReflexAdjustedDamage(

int nDamage,
object oTarget,
int nDC,
int nSaveType =
 SAVING_THROW_TYPE_NONE,
object oSaveVersus = OBJECT_SELF)

This routine is used within scripts that apply damage from
spell to adjust the total damage by reflex saving throws and
evasion. The spell target oTarget makes a saving throw
check of type nSaveType at difficulty class nDC against the
object nSaveType to reduce the base damage nDamage. The
saving throw type is a SAVING_THROW_TYPE_...
constant, which includes various spell descriptors such as
acid, death, fear, law, negative energy and sonic.

Example script: 'x0_s3_shurik'.
int GetReflexSavingThrow(

object oTarget)
If oTarget is a creature, door or placeable, this routine will

return the object's base reflex saving throw. A zero will be
returned for an invalid object. See ReflexSave and
SetReflexSavingThrow.

int GetWillSavingThrow(
object oTarget)

If oTarget is a creature, door or placeable, this routine will
return the object's base willpower saving throw. A zero will
be returned for an invalid object. See WillSave and
SetWillSavingThrow.

Checks

The following calls are used to determine whether the
creature oCreature succeeds at a saving throw check against
the source object oSaveVersus with the nDC difficulty class
against an effect caused by oSaveVersus. The type
nSaveType can be set to a SAVING_THROW_... global
constant for saves against specific spell descriptors.

The returned result is a SAVING_THROW_CHECK_...
constant. The value indicates whether the save was
successful, a failure, or if the target was immune to the save
type. See the notes when using these calls in an Area of
Effect object script.
int FortitudeSave(

object oCreature,
int nDC,
int nSaveType =
 SAVING_THROW_TYPE_NONE,
object oSaveVersus = OBJECT_SELF)

This is used for a Fortitude saving throw check. See the
section introduction, along with GetFortitudeSavingThrow
and SetFortitudeSavingThrow.
int ReflexSave(

object oCreature,
int nDC,
int nSaveType =
 SAVING_THROW_TYPE_NONE,
object oSaveVersus = OBJECT_SELF)

This is used for a Reflex saving throw check. See the
section introduction, along with GetReflexSavingThrow
and SetReflexSavingThrow.

50

Interaction

int WillSave(
object oCreature,
int nDC,
int nSaveType =
 SAVING_THROW_TYPE_NONE,
object oSaveVersus = OBJECT_SELF)

This is used for a Willpower saving throw check. See the
section introduction, along with GetWillSavingThrow and
SetWillSavingThrow.

Sense

See also the descriptions for GetMatchedSubstring and
GetMatchedSubstringCount.
int GetIsListening(object oObject)

This will return true if the object oObject is listening. See
SetIsListening.
int GetListenPatternNumber()

If an 'On Conversation' script is triggered by a listen
pattern match (as established by the SetListenPattern call),
this will return the index of the pattern heard. If none of the
patterns matched, this will return -1. This is used, for
example, in the nw_c2_default4 'On Conversation' script to
check if the creature heard any of the predefined patterns.
int GetObjectHeard(

object oTarget,
object oSource = OBJECT_SELF)

This returns true only if creature oSource has heard the
creature oTarget.
int GetObjectSeen(

object oTarget,
object oSource = OBJECT_SELF)

This returns true only if creature oSource has viewed the
creature oTarget.
int LineOfSightObject(

object oSource,
object oTarget)

This call returns true only if there is a direct line of sight
from oSource to oTarget. This can be blocked by terrain or
placeables. Note that the call notes warn against frequent
use of this function because it is computationally expensive.

int LineOfSightObject(
vector vSource,
vector vTarget)

This call returns true only if there is a direct line of sight
from the vector vSource to the vector vTarget. This can be
blocked by terrain or placeables. Note that the call notes
warn against frequent use of this function because it is
computationally expensive.
void SetAssociateListenPatterns(

object oTarget = OBJECT_SELF)
This will clear the listening patterns for the target oTarget,

then set the listening patterns to the strings in the include
file gb_setassociatelistenpatterns. These are used for
henchmen and other associates.
void SetListening(

object oObject,
int bValue)

This call will establish whether or not the object oObject is
listening, based on the boolean bValue. See GetIsListening.
void SetListenPattern(

object oObject,
string sPattern,
int nNumber = 0)

When the object oObject is listening, this will cause it to
listen for the pattern sPattern, as spoken in the game via the
SpeakString call. Objects can listen to multiple patterns, in
which case nNumber is the index number of the pattern
being set.

Store

See GetInfiniteFlag and SetInfiniteFlag.
int GetStoreGold(object oStore)

If oStore is a valid store that is using gold, this will return
the amount of gold currently possessed by that store. If the
store is not using gold, this returns -1. If oStore is not a
valid store, this will return -2.
int GetStoreIdentifyCost(object oStore)

If the object oStore is a Store, this routine will return the
cost in gold pieces that the store will charge for identifying
a magic item. A result of -1 means the store does not
identify magic items. If oStore is not a valid store, this will
return -2.

51

Interaction

int GetStoreMaxBuyPrice(object oStore)
This routine returns the maximum price in gold pieces that

the store oStore will spend for an item. If -1 is returned,
then there is no limit on the amount the store will spend
(other than the total gold available). If oStore is not a valid
store, this will return -2.
void OpenStore(

object oStore,
object oPC,
int nBonusMarkUp = 0,
int nBonusMarkDown = 0)

This routine will open the interface of the store oStore for
the PC oPC. The nBonusMarkUp is the percentage (from
-100 to 100) the store will add to the base cost of an item
for sale. The nBonusMarkDown is the percentage (from
-100 to 100) that the store will deduct from the base cost of
an item it will purchase.
void SetStoreGold(

object oStore,
int nGold)

This will set the amount of gold nGold that the store
oStore has on hand for making purchases. If nGold is -1,
then the store is set to not use gold and so will not purchase
objects.
void SetStoreIdentifyCost(

object oStore,
int nCost)

This routine will change the price nCost that the store
oStore will charge for identifying magic items. By default
this amount is 100 gold pieces. A price of -1 will prevent
the store from identifying items.
void SetStoreMaxBuyPrice(

object oStore,
int nMaxBuy)

This call will set the maximum amount nMaxBuy that the
store oStore will spell to purchase an item that it is allowed
to buy. The store must still have enough gold on hand to
make the purchase. An nMaxBuy setting of -1 means the
store can spend up the maximum gold it has available.

Interface

In the following calls, the colors must be in hexadecimal
code, rather than an index into the nwn_colors.2da file.
void BlackScreen(

object oCreature,
int nColor = 0)

This routine will cause the screen to instantly change to
the color nColor for the player that controls oCreature. By
default the color is black. This can be used prior to a
FadeFromBlack call, and it is reverted by a StopFade call.
void FadeFromBlack(

object oCreature,
float fSpeed = FADE_SPEED_MEDIUM)

This causes the screen for the player running the creature
oCreature to fade from black. The fSpeed determines the
time period required for the fade to complete. There are
several global constants FADE_SPEED_... that can be
passed in this field.
void FadeToBlack(

object oCreature,
float fSpeed = FADE_SPEED_MEDIUM,
float fFailsafe = 5.0,
int nColor = 0)

The screen for the player running the creature oCreature
will fade to the color nColor, which defaults to black. The
fSpeed determines the time period required for the fade to
complete. If fFailsafe is not zero, then after fFailsafe
seconds the fade will be removed even if a FadeFromBlack
call is not executed.
void SetPanelButtonFlash(

object oPlayer,
int nButton,
int bEnableFlash)

When bEnableFlash is set to true, this call will make the
button nButton flash on the interface of player oPlayer.
Valid button values are PANEL_BUTTON_... constants.
Passing false in bEnableFlash will turn off the flashing.
void StopFade(

object oCreature)
This call will remove any fading for the player controlling

the creature oCreature.

52

Interface

Panels

See also OpenInventory and OpenStore.
void CloseGUIScreen(

object oPlayer,
string sScreenName)

If the graphical panel sScreenName is open on the client
display of the player oPlayer, and the panel exists in the
[ScriptGUI] section of the ingamegui.ini file, then this
routine will close the panel.
void DisplayGuiScreen(

object oPlayer,
screen sScreenName,
int bModal,
string sFileName = “”,
int bOverrideOptions = FALSE)

This routine runs the graphical user interface screen
sScreenName on the client system of the player oPlayer.
The valid screen names are listed in the [GuiScreen] section
of the file ingamegui.ini, if it exists. Otherwise, a valid
screen resource file can be passed in the sFileName field (as
long as that is not already in use). This file will typically be
of the form myguiname.xml. If bModal is true then the
interface is modal and can not be bypassed. The
bOverrideOptions field is not documented.

For details on how to communicate with this GUI screen,
see the Components section below.
void DisplayInputBox(

object oPC,
int nMessageStrRef,
string sMessage,
sOkCB = “”,
sCancelCB = “”,
bShowCancel = TRUE,
sScreenName =
 SCREEN_STRINGINPUT_MESSAGEBOX,
nOkayStrRef = 66,
sOkayString = “”,
nCancelStrRef = 67,
sCancelString = “”,
sDefaultString = “”)

The notes for this command were mangled in the toolkit,
so the parameter types above are best guesses. This runs a
text input interface on the client system of the player

running the character oPC. The dialogue includes a
message, an input field and an okay and cancel buttons. The
field names of the interface are set by the references in the
'.tlk' file, unless they are overridden by passing a string as
an argument:

Interface Element String Reference Override Field

Okay Button nOkayStrRef sOkayString

Cancel Button nCancelStrRef nCancelString

Message nMessageStrRef sMessage

Default input — sDefaultString

If a script is passed in the sOkCB field, and the name
begins with 'gui', then that script will be run when the player
clicks the okay button. Likewise, a sCancelCB script name
string beginning with 'gui' be run when the player clicks
cancel.
void DisplayMessageBox(

object oPC,
int nMessageStrRef,
string sMessage,
sOkCB = “”,
sCancelCB = “”,
bShowCancel = TRUE,
sScreenName =
 SCREEN_STRINGINPUT_MESSAGEBOX,
nOkayStrRef = 66,
sOkayString = “”,
nCancelStrRef = 67,
sCancelString = “”)

The notes for this command were mangled in the toolkit,
so the parameter types above are best guesses. This runs a
text message interface on the client system of the player
running the character oPC. The dialogue includes a message
plus okay and cancel buttons. The field names of the
interface are set by the references in the '.tlk' file, unless
they are overridden by passing a string as an argument:

Interface Element String Reference Override Field

Okay Button nOkayStrRef sOkayString

Cancel Button nCancelStrRef nCancelString

Message nMessageStrRef sMessage

If a script is passed in the sOkCB field, and the name

53

Interface

begins with 'gui', then that script will be run when the player
clicks the okay button. Likewise, a sCancelCB script name
string beginning with 'gui' be run when the player clicks
cancel.

For a larger message box with a scrolling window, you
can pass "SCREEN_MESSAGEBOX_REPORT" for the
"sScreenName" value. This is the same dialog box that is
used for the tutorial interface in the original campaign.
object GetPlayerCreatureExamineTarget(

object oCreature)
If oCreature is a valid player-controlled creature, this will

return the creature for which the player has opened the
creature examine panel.
void PopUpDeathGUIPanel(

object oPC,
int bRespawnButtonEnabled = TRUE,
int bWaitForHelpButtonEnabled =
 TRUE,
int nHelpStringReference = 0,
string sHelpString = “”)

This routine displays the user interface panel that is
displayed when a player character oPC has died. If
bRespawnButtonEnabled is true, the panel will display the
Respawn button, allowing the character to be spawned back
into the game. The bWaitForHelpButtonEnabled is true, the
“Wait for Help” button will appear. The remaining
parameters are undocumented.
void PopUpGUIPanel(

object oPC,
int nGUIPanel)

This call will cause the graphical user interface panel
nGUIPanel to appear on the client of the player that
controls the player character oPC. The nGUIPanel is a
global constant of the form GUI_PANEL_.... Currently
there is only one GUI panel:
GUI_PANEL_PLAYER_DEATH.
void ShowWorldMap(

string sWorldMap,
object oPlayer,
string sTag)

This displays the world map sWorldMap to the player
oPlayer. The current location is identified by the string
sTag.

Components

These calls are used for manipulating components in user
interface (UI) panels. See the UI/default directory under the
game install folder for various XML-based user interface
definitions.
void SetGUIObjectText(

object oPlayer,
string sScreenName,
string sUIObjectName,
int nStrRef,
string sText)

For the GUI named sScreenName opened for player
character oPlayer, this call will send the string referenced
by nStrRef to the UIText object named sUIObjectName. If
nStrRef is set to ‒1, this call will send the text string sText
instead.
• SetGUIObjectDisabled

• SetGUIObjectHidden

• SetGUIProgressBarPosition

• SetGUITexture

• AddListBoxRow

• ClearListBox

• ModifyListBoxRow

• RemoveListBoxRow

• SendNoticeText

• SetListBoxRowSelected

• SetLocalGUIVariable

• SetPlayerGUIHidden

• SetScrollBarRanges

• SetScrollbarValue

Journal

See the 'ginc_journal' include file for other scripted journal
routines.

54

Interface

void AddJournalQuestEntry(
string szPlotID,
int nState,
object oCreature,
int bAllPartyMembers = TRUE,
int bAllPlayers = FALSE,
int bAllowOverrideHigher = FALSE)

This will add a journal entry from the journal editor to the
owning player's journal of creature oCreature. The
szPlotID is the journal category tag, while nState is the
journal entry ID. If bAllPartyMembers is true, add the entry
to all journals of players in the party. If bAllPlayers is true,
the entry is added to every journal. Unless
bAllowOverrideHigher the entry must be se to a nState that
is higher than the current ID.
int GetJournalEntry(

string szPlotID,
object oCreature)

This returns the current journal entry identifier from the
szPlotID journal category tag of the creature oCreature.
int GetJournalQuestExperience(

string szPlotID)
This retrieves the experience points that are granted to the

player for the completion of the quest with the journal
category tag szPlotID.
void RemoveJournalQuestEntry(

string szPlotID,
object oCreature,
int bAllPartyMembers = TRUE,
int bAllPlayers = FALSE)

This routine will remove the a journal entry with the tag
szPlotID from the journal of the creature oCreature. If
bAllPartyMembers is true, remove the entry from the
journals of all players in the party. If bAllPlayers is true, the
entry is removed from every journal.

Messages
void DebugPostString(

object oTarget,
string sMessage,
int nX,
int nY,
float fDuration,
int nColor = 4294901760)

This posts a debug message sMessage on the screen of the
object oTarget. The nX and nY specify the screen
coordinates, fDuration is the length of time the message
will remain and nColor is the color used.
void FloatingTextStringOnCreature(

string sStringToDisplay,
object oCreatureToFloatAbove,
int bBroadcastToFaction = TRUE,
float fDuration = 5.0f)

This call will cause the string sStringToDisplay to float
above the creature oCreatureToFloatAbove. If the boolean
bBroadcastToFaction is true, then only players controlling
creatures belonging to the same faction as the creature to
float a message above will see the message, and then only if
they are within 30 meters. The duration that the message
will appear is set by fDuration in seconds.
void FloatingTextStrRefOnCreature(

int nStrRefToDisplay,
object oCreatureToFloatAbove,
int bBroadcastToFaction = TRUE,
float fDuration = 5.0)

This call will cause a message to float above the creature
oCreatureToFloatAbove. The nStrRefToDisplay integer is
an identifier for a string in the Dialog.tlk file. If the boolean
bBroadcastToFaction is true, then only players controlling
creatures belonging to the same faction as the creature to
float a message above will see the message, and then only if
they are within 30 meters. The duration that the message
will appear is set by fDuration in seconds.
string GetStringByStrRef(

int nStrRef,
int nGender = GENDER_MALE)

This call retrieves a string from a special file called a talk
table. This consists of a set of language-translated strings
that can be looked up via a reference ID. (This is the

55

Interface

dialog.TLK file in the game folder.) This routine will return
the string associated with reference nStrRef, with a gender
determined by nGender.

As an example, the racialsubtypes.2da file lists the
Tiefling on row 14. The Description column of this row has
string reference 112092. Calling GetStringByStrRef with
nStrRef set to this value returns the description that is
presented during the character generation process for the
Tiefling.
void SendMessageToAllDMs(string szMessage)

This sends the message szMessage to the DMs on the
server.
void SendMessageToPC(

object oPlayer,
string sMessage)

This will cause the message sMessage to appear in the
chat window of player controlling the PC oPlayer.
void SendMessageToPCByStrRef(

object oPlayer,
int nStrRef)

This is similar to SendMessageToPC, except the message
to the player oPlayer is obtained from the string reference
nStrRef.

Message Colors

The following color hex codes can be used to simulate the
colors that the game engine uses in the chat window. (For
more information, see the Font Format section in volume I.)

Color Hex Code Typical Uses

Red #eb0000 Fire damage; pause

Dk. Orange #f16000 Physical damage; combat msg.

Lt. Orange #ff9900 Sonic damage

Yellow #ffff00 Divine damage; informational

Green #00ff00 Acid damage

Lt. Blue #99ffff Cold damage; PC name

Blue #60c1f1 Opponent save

Dk. Blue #005eec Electric damage

Lt. Violet #cc99cc Opponent name

Violet #cc77ff Magical damage; casting spell

White #ffffff Positive energy damage

Gray #8e8e8e Negative energy damage

56

Inventory

Inventory

Items are objects that can be placed in the inventory of a
creature or container. The following routines are used for
item management and the manipulation of an inventory.

Management

void ActionEquipItem(
object oItem,
int nInventorySlot)

Place the item oItem into the equipment slot
nInventorySlot, which is specified by one of the
INVENTORY_SLOT_... constants. If an error occurs, this
will log (but not print) a message.
void ActionEquipMostDamagingMelee(

object oTarget = OBJECT_INVALID,
int bOffhand = FALSE)

The creature will equip itself with the melee weapon in its
inventory that inflicts the highest damage. If none is
available, the highest damage ranged weapon will be
equipped instead. If oTarget is a creature, the most effective
weapon against that creature will be selected (thus
presumably taking advantage of 'Attack Bonus vs. ...' item
properties). If bOffhand is true, put the weapon in the off
hand. (The last didn't seem to work when I tested it.) The
notes for this command warn that it should only be run in
the 'End of Combat Round' scripts.
void ActionEquipMostDamagingRanged(

object oTarget = OBJECT_INVALID)
The creature will equip itself with the ranged weapon in its

inventory that inflicts the highest damage. If oTarget is a
creature, the most effective weapon against that creature
will be selected (thus presumably taking advantage of
'Attack Bonus vs. ...' item properties).
void ActionEquipMostEffectiveArmor()

The creature will equip the armor with the highest Armor
Class in its inventory. If there are two pieces of armor with
the same Armor Class, this routine appears to choose the
one with the highest allowed dexterity bonus.

void ActionGiveItem(
object oItem,
object oGiveItemTarget,
int bDisplayFeedback = TRUE)

The subject of this command will give the item oItem to
the creature oGiveItemTarget. Nothing will occur if either
oItem is not a valid item or oGiveItemTarget is not an
existing object. If bDisplayFeedback is true then a message
will be displayed in the chat window.
void ActionPickUpItem(object oItem)

The subject picks up the item oItem from the ground. If an
error occurs, it will be logged to the log file.
void ActionPutDownItem(object oItem)

The subject puts item oItem on the ground. If an error
occurs, it will be logged to the log file.
void ActionTakeItem(

object oItem,
object oTakeFrom,
int bDisplayFeedback = TRUE)

This action will cause the subject to take the object oItem
from the target oTakeFrom. If bDisplayFeedback is true,
and the exchange involves a PC, a message will be printed
to the chat window. If either oItem or oTakeFrom is invalid,
nothing happens.
void ActionUnequipItem(

object oItem)
If oItem is valid, it will be unequipped from its current slot

and placed in the subject's general inventory.
void OpenInventory(

object oCreature,
object oPlayer)

This will open the inventory panel of the creature
oCreature for the player oPlayer. For players this will only
work for their owned player or the controlled creatures. If
the oPlayer is the DM, this can be used to view the
inventory of any creature.
void SetDroppableFlag(

object oItem,
int bDroppable)

This sets the Droppable property of an item oItem to the
boolean state bDroppable.

57

Inventory

void SetIdentified(
object oItem,
int bIdentified)

This will set the Identified property of the item oItem to
bIdentified.
void SetInfiniteFlag(

object oItem,
int bInfinite = TRUE)

If bInfinite is true, this will set the Infinite property on an
item oItem in a store inventory. This will cause the store not
to run out of the item.
void SetItemCharges(

object oItem,
int nCharges)

The charges on an item are used to power it's charged-
based special properties. This call sets the number of
charges on the item oItem to nCharges. Setting the number
of charges to zero will result in the item being destroyed.
void SetItemCursedFlag(

object oItem,
int bCursed)

This call sets the Cursed property on the item oItem to the
boolean bCursed. When the Cursed property is true, an item
can not be dropped.
void SetItemPropActivated(

object oItem,
int nPref)

The activation preference property determines how the
special properties of item oItem are activated. A value for
nPref of zero requires the item to be equipped; a value of 1
means the item will only be active when it is in the
creature's repository (and not equipped), while a value of 3
will be active whether it is equipped or not.
void SetItemStackSize(

object oItem,
int nSize,
int bDisplayFeedback = TRUE)

The size of the stack for item oItem is changed to nSize. If
nSize is greater than the maximum stack size for the item,
then the stack size will be set to the maximum. Values less
than 1 will be set to 1. Setting bDisplayFeedback prevents
feedback from being sent to a player.

void SetPickpocketableFlag(
object oItem,
int bPickpocketable)

If oItem is a valid item, this will set the state of the item's
'Pickpocketable?' flag to bPickpocketable.
void SetStolenFlag(

object oStolen,
int bStolenFlag)

This will set the stolen flag of the item oStolen to the
boolean bStolenFlag. Stolen items can not be sold at stores
that has the 'Black Market?' property set to false.
void SetWeaponVisibility(

object oObject,
int bVisible,
int nType = 0)

This sets the visibility on a weapon, helm or both to
bVisible for object oObject. A nType of 0 sets the weapon
visibility; a value of 1 sets the helm visibility, and 2 sets the
visibility on both.

Creation
object CopyItem(

object oItem,
object oTarget = OBJECT_INVALID,
int bCopyVars = FALSE)

If oItem is a valid item, this call will make a copy of the
object and place it in the inventory of the object oTarget,
and return the object copy. If oItem is invalid or a non-
empty container, this will return OBJECT_INVALID. If
oTarget is invalid, the copy will be placed at the same
location as oItem. If bCopyVars is true, any local variables
set on item oItem will be reproduced on the copy.

If there are stackable objects at the item's target location,
then the copy will be merged with the existing copies and
the combined stack will be returned by this call.
object CopyItemAndModify(

object oItem,
int nType,
int nIndex,
int nNewValue,
int nCopyVars = FALSE)

This call makes copy of the object oItem while making a

58

Inventory

single change to the item's appearance. The modification is
determined by the nType, nIndex and nNewValue, where
nType and nIndex are ITEM_APPR_... constants as follows:

nType
ITEM_APPR_TYPE_...

nIndex
ITEM_APPR_... iNewValue

SIMPLE_MODEL N/A Model #
WEAPON_COLOR WEAPON_COLOR_... 1-4
WEAPON_MODEL WEAPON_MODEL_... Model #
ARMOR_MODEL ARMOR_MODEL_... Model #
ARMOR_COLOR ARMOR_COLOR_... 0-63

Thus the following call:
object myCustomItem = CopyItemAndModify(
 oExistingItem,
 ITEM_APPR_TYPE_WEAPON_MODEL,
 ITEM_APPR_WEAPON_MODEL_TOP, 2);
will change the color of the top part of a weapon to model
number 2. The iIndex value is ignored for simple items and
helmets. See GetItemAppearance.
object CreateItemOnObject(

string sItemTemplate,
object oTarget = TARGET_SELF,
int nStackSize = 1,
string sNewTag = “”,
int bDisplayFeedback = TRUE)

The item with the template sItemTemplate is created in the
inventory of the object oTarget. It will set the stack size of
the created object to the lower of nStackSize and the item's
maximum stack size. If nNewTag is not an empty tag, the
tag of the item will be set to this value. If
bDisplayFeedback is false, no feedback will be printed in
the chat window.

Query

See also GetHasInventory, GetInventoryDisturbItem,
GetLastDisturbed and the Item properties section.
int GetArmorRank(object oItem)

If the item oItem is of base item type Armor, this will
return the category as an ARMOR_RANK_... constant.
int GetBaseItemType(object oItem)

This call returns a constant BASE_ITEM_... that gives the
Base Item property of the item oItem.

int GetDroppableFlag(
object oItem)

This routine will return true only if the item oItem can be
dropped. That is, the 'Droppable?' parameter is true.
object GetFirstItemInInventory(

object oTarget = OBJECT_SELF)
If oTarget is a creature, item, placeable or store, this call

will return the first item in the object's inventory.
Subsequent calls to GetNextItemInInventory will return the
remaining items.
int GetGoldPieceValue(object oItem)

For a valid item oItem, this will return the base gold piece
value. If oItem is not an item, this will return 0.
int GetIdentified(object oItem)

This will return true only if oItem is a valid item and it has
been identified. See SetIdentified.
int GetInfiniteFlag(

object oItem)
If oItem is a valid store item and it has the infinite flag set

to true, it will not run out when purchased. See
SetInfiniteFlag.
int GetItemACValue(

object oItem)
If the item oItem provides an armor class benefit, this

routine will return the armor value.
int GetItemAppearance(

object oItem,
int nType,
int nIndex)

This routine returns the appearance values for the type
nType and index nIndex of item oItem. Valid values for the
nType and nIndex parameters match the constants used in
the CopyItemAndModify routine.
int GetItemCharges(

object oItem)
This call will query the item oItem and return the number

of charges remaining.
int GetItemCursedFlag(

object oItem)
This will return true if the item oItem has the cursed

property set. A cursed item can not be dropped by its owner.

59

Inventory

int GetItemIcon(object oTarget)
This will return the icon number of the item oTarget. This

is a row number in the 'nwn_icons.2da' file.
object GetItemInSlot(

int nInventorySlot,
object oCreature = OBJECT_SLOT)

This routine will return the item in the inventory slot
nInventorySlot of the creature oCreature, if any. The slot
type is a constant INVENTORY_SLOT_....
object GetItemPossessedBy(

object oCreature,
string sItemTag)

This returns the object instance of an item with the tag
sItemTag that is owned by the creature oCreature, or
OBJECT_INVALID if the creature lacks the item.
object GetItemPossessor(object oItem)

This will return the object that currently possesses the item
oItem, or OBJECT_INVALID if none.
int GetItemPropActivation(

object oItem)
This call returns a constant that gives the 'Item Property

Activation Preference' setting for the item oItem. A return
value of 0 indicates an item that is active only when
equipped. If the result is 1, the item is active only when not
equipped. The value of 2 indicates an item that is active
regardless of whether it is equipped or not. See
SetItemPropActivation.
int GetItemStackSize(object oItem)

This returns the maximum stack size of the object oItem.
object GetNextItemInInventory(

object oTarget = OBJECT_SELF)
This call returns the next item in the inventory of object

oTarget. This list can be re-initialized by a call to the
GetFirstItemInInventory routine.
object GetNumStackedItems(object oItem)

This returns the number of items in the oItem stack. This is
a value between 1 and the maximum stack size for the item.
int GetPickpocketable(object oItem)

If oItem is a valid item, this will return true if the item's
'Pickpocketable?' flag is set to true.
object GetSpellCastItem()

Some spells are configured to run a script when they are

cast. When this call is run from a spell script, it will return
the item that was used to activate the spell.
int GetStolenFlag(object oStolen)

If oStolen is an item, this call will return true if the object
is flagged as stolen (such as via a successful pick pocket).
object GetWeaponRanged(object oItem)

This call returns true if the item oItem is a ranged weapon.
int GetWeaponType(object oItem)

If item oItem is a weapon, this routine will return a value
WEAPON_TYPE_... that indicates the weapon type.
int GetWeight(

object oTarget = OBJECT_SELF)
If oTarget is an item, this will return the item's weight in

tenths of English pounds (1 pound = 0.45 kg). If oTarget is
a creature, this will return the total weight being carried in
tenths of pounds.

Module Item Scripts

These calls are useful in specific module scripts, which are
set in the Scripts block of the Module properties.
object GetItemActivated()

This routine can be used in a module's 'On Activate Item'
script to return the item activated.
object GetItemActivatedTarget()

This routine can be used in a module's 'On Activate Item'
script to return the target of the item.
object GetItemActivatedTargetLocation()

This routine can be used in a module's 'On Activate Item'
script to return the location of the item's target.
object GetItemActivator()

This routine can be used in a module's 'On Activate Item'
script to return the creature that activated the item.
object GetModuleItemAcquired()

When called from a module's 'On Acquire Item' script, this
routine will return the item acquired.
object GetModuleItemAcquiredBy()

When called from a module's 'On Acquire Item' script, this
routine will return the object that acquired the item.
object GetModuleItemAcquiredFrom()

When called from a module's 'On Acquire Item' script, this

60

Inventory

routine will return the object that previously possessed the
item.
object GetModuleItemAcquiredStackSize()

When called from a module's 'On Acquire Item' script, this
routine will return the stack size of the item acquired.
object GetModuleItemLost()

When called from a module's 'On Unacquire Item' script,
this routine will return the item lost.
object GetModuleItemLostBy()

When called from a module's 'On Unacquire Item' script,
this routine will return the creature that lost the item.
object GetPCItemLastEquipped()

When called from a module's 'On Player Equip Item'
script, this routine will return the item that was equipped.
object GetPCItemLastEquippedBy()

When called from a module's 'On Player Equip Item'
script, this routine will return the PC that equipped the item
returned by GetPCItemLastEquipped.
object GetPCItemLastUnequipped()

When called from a module's 'On Player Equip Item'
script, this routine will return the item that was unequipped.
object GetPCItemLastUnequippedBy()

When called from a module's 'On Player Equip Item'
script, this routine will return the PC that unequipped the
item returned by GetPCItemLastUnequipped.

Item Properties

These routines can be used to modify properties on an
item from a script, rather than configuring the item
properties field. This is useful for transitory properties, such
as those provided by a spell, or in-game enhancements
using the crafting skills.

See the 'x2_inc_itemprop' file for a list of useful functions
related to item properties. In particular, the function
IPSafeAddItemProperty is useful when you want to prevent
stacking of properties.

Management

void AddItemProperty(
int nDurationType,
itemproperty ipProperty,
object oItem,
float fDuration = 0.0f)

This will add a property to the item oItem. The
nDurationType must be one of:

• DURATION_TYPE_PERMANENT

• DURATION_TYPE_TEMPORARY

The ipProperty can be created by a ItemProperty... routine.
If temporary, the duration is specified by the fDuration
value in seconds.

After using this call on an item in a character's inventory,
the property may not become active until it is removed from
the inventory. To activate right away, I copy the item using
CopyItem, then destroy the original using DestroyObject.
void RemoveItemProperty(

object oItem,
itemproperty ipProperty)

This removes the item property ipProperty from the item
oItem.
void SetItemPropActivation(

object oItem,
int nPref)

This sets the 'Item Property Activation Preference'
property for an item oItem. Pasing a value of zero for nPref
indicates activation when equipped, a one causes activation
when not equipped, and a two results in activation whether

61

Item Properties

the item is equipped or not.

Query

itemproperty GetFirstItemProperty(
object oItem)

This will return an itemproperty result that is the first item
property on a valid item oItem. Use GetNextItemProperty to
view additional properties.
int GetIsItemPropertyValid(

itemproperty nItemProp)
If the item property nItemProp is valid then this routine

will return true.
int GetItemHasItemProperty(

object oItem,
int nProperty)

This routine returns true if oItem is a valid item and it has
the property nProperty, which is a ITEM_PROPERTY_...
constant.
int GetItemPropActivation(

object oItem)
This returns the 'Item Property Activation Preference'

setting for an item oItem. A zero indicates activation when
equipped, a one is activated when not equipped, and a two
is activated whether equipped or not.
int GetItemPropertyCostTable(

itemproperty iProp)
Given an item property iProp, this routine will return a

row in the 'iprp_costtable.2da' file. The name value on this
row contains the name of a 2da file containing the item
property cost information. GetItemPropertyCostTableValue
is used to obtain the cost table value of the item property.
int GetItemPropertyCostTableValue(

itemproperty iProp)
This returns an index in the item property cost table file, as

determined by the GetItemPropertyCostTable call, for the
item property iProp. Given the row of the cost table file,
you can query the 2da file for the cost.

See the 'Two-Dimensional Arrays' section.
int GetItemPropertyDurationType(

itemproperty iProp)
This call returns the duration type of the item property

iProp. This is a DURATION_TYPE_... constant; either
instant, permanent or temporary.
int GetItemPropertyParam1(

itemproperty iProp)
The notes for this routine state that it returns the Param1

number of the item property iProp from the 2da file. It
returns the row number in the iprp_paramtable.2da file. See
GetItemPropertyParamValue1.
int GetItemPropertyParam1Value(

itemproperty iProp)
This routine returns the Param1 value of the item property

iProp from the 2da file. After finding the row of the
iprp_paramtable.2da table using GetItemPropertyParam1,
the entry in the TableResRef column gives the 2da file
queried by this function. This call returns a row number in
that 2da file.

For example, if row 4 of iprp_paramtable.2da is returned
by GetItemPropertyParam1, the TableResRef column gives
the file iprp_alignment.2da for a specific alignment. If this
call returns row 5, then the resulting label is NE, or neutral
evil.
int GetItemPropertySubType(

itemproperty iProp)
This call fetches the subtype number of the item property

from the iprop....2da files. For an item property type of
damage vulnerability or damage immunity, it returns a
constant of the form IP_CONST_DAMAGETYPE_*.
int GetItemPropertyType(

itemproperty iProp)
This returns the type of the item property iProp. This is an

ITEM_PROPERTY_... constant value.
itemproperty GetNextItemProperty(

object oItem)
This routine will return the next item property in the list of

properties for item oItem, or an invalid property when the
end of the list is reached. Use the GetFirstItemProperty call
to reset the list.

Properties

The following properties are equivalent to the properties
that can be set in the 'Item Properties' field of an item

62

Item Properties

blueprint.
itemproperty ItemPropertyAbilityBonus(

int nAbility,
int nBonus)

This item property provides a bonus nBonus to the ability
nAbility, which is set to an IP_CONST_ABILITY_... global
constant. The ability bonus is a positive integer between 1
and 12.
itemproperty ItemPropertyACBonus(

int nBonus)
This item property gives a bonus nBonus to the owner's

armor class. The bonus is a positive integer in the range
from 1 to 20. The routine notes say that the type of bonus
depends on the item, but not how.
itemproperty ItemPropertyACBonusVsDmgType(

int nDamageType,
int nACBonus)

This will add a property that gives an armor class bonus
nACBonus against a type of damage nDamageType, which
is a constant IP_CONST_DAMAGETYPE_.... The bonus is
a positive integer between 1 and 20.
itemproperty ItemPropertyACBonusVsAlign(

int nAlignGroup,
int nACBonus)

This property provides an armor class bonus nACBonus
against an alignment group nAlignGroup. The alignment is
a constant IP_CONST_ALIGNMENTGROUP_.... The
bonus is a positive integer from 1 and 20. The routine notes
say that the type of bonus depends on the item, but not how.
itemproperty ItemPropertyACBonusVsRace(

int nRace,
int nACBonus)

This returns an item property that provides an armor class
bonus nACBonus versus members of the racial group
nRace, which is a IP_CONST_RACIALTYPE_... constant.
(The values of these constants match those of the
RACIAL_TYPE_... constants.) The bonus is a positive
integer between 1 and 20.

Note that there is no IP_CONST_RACIAL_TYPE
constant for incorporeal creatures, even though an item
blueprint can be set with an AC bonus vs. incorporeal
property.

itemproperty ItemPropertyACBonusVsSAlign(
int nAlign,
int nACBonus)

This property provides an armor class bonus nACBonus
against an attacker with the alignment nAlign, which is a
IP_CONST_ALIGNMENT_... constant. The bonus is a
positive integer between 1 and 20.
itemproperty ItemPropertyArcaneSpellFailure(

int nModLevel)
This property modifies the odds of an arcane spell failure,

much like the penalty applied by armor and shields. The
nModLevel parameter is a global constant of the form
IP_CONST_ARCANE_SPELL_FAILURE_..., which gives
penalties or bonuses in 5% increments between +50% and
-50%.
itemproperty ItemPropertyAttackBonus(

int nBonus)
This provides an attack bonus nBonus, which must be a

positive integer between 1 and 20.
itemproperty ItemPropertyAttackBonusVsAlign(

int nAlignGroup,
int nBonus)

This item property provides the attack bonus nBonus when
attacking a target belonging to the nAlignGroup alignment
group, which is an IP_CONST_ALIGNMENTGROUP_...
global constant. The bonus is a positive integer between 1
and 20.
itemproperty ItemPropertyAttackBonusVsRace(

int nRace,
int nBonus)

This will give an attack bonus nBonus when attacking a
member of the racial group nRace, which is set by a global
constant IP_CONST_RACIALGRUP_.... The bonus is a
positive integer between 1 and 20.
itemproperty ItemPropertyAttackBonusVsSAlign(

int nAlignment,
int nBonus)

This is similar to ItemPropertyAttackBonusVsAlign,
except the nAlignment is a IP_CONST_ALIGNMENT_...
constant. It applies to an alignment rather than a group of
alignments. The bonus is a positive integer from 1 to 20.

63

Item Properties

itemproperty ItemPropertyAttackPenalty(
int nPenalty)

This causes the item to apply a penalty nPenalty to all
attacks. The penalty is a positive integer between 1 and 5,
which is then subtracted from the owner's attack bonus.
There is no direct method to limit the penalty to specific
races or alignments, although it could be mixed with
ItemPropertyAttackBonus... properties.
itemproperty ItemPropertyBonusFeat(

int nFeat)
The item owner gains the feat nFeat, which is a global

constant IP_CONST_FEAT_.... corresponding to a row in
'iprp_feats.2da'. (Note that not all feats in 'feat.2da' are
available as item property feats.) Unlike FeatAdd, this does
not provide a means to check for prerequisites.
itemproperty ItemPropertyBonusHitpoints(

int nBonusType)
This item property provides bonus hit points to the owner.

The nBonusType is a row in the iprp_bonushp.2da file. A
value of zero gives a random bonus, while from 1 to 20 it
gives that many hit points. Thereafter it increases by +5 per
row up to a maximum of +50 at row 26.
itemproperty ItemPropertyBonusSpellLevel(

int nClass,
int nSpellLevel)

This will add a bonus spell slot to the number of spells per
day that can be prepared. The spell slot belongs to the class
nClass, an IP_CONST_CLASS_... constant, and has spell
level nSpellLevel.
itemproperty ItemPropertyBonusSavingThrow(

int nBaseSaveType,
int nBonus)

This adds a bonus nBonus to the base fortitude, reflex, or
willpower saving throw nBaseType, which is a constant of
the form IP_CONST_SAVEBASETYPE_.... A base type of
IP_CONST_SAVEBASETYPE_ALL will apply the bonus
to all saving throws. The bonus is a positive integer between
1 and 20.
itemproperty ItemPropertyBonusSavingThrowVsX(

int nBonusType,
int nBonus)

This provides a saving throw bonus nBonus against a
particular effect or type of damage determined by

nBonusType, which is a constant IP_CONST_SAVEVS_...
that matches a row number in 'iprp_saveelement.2da'. The
bonus is a positive integer between 1 and 20.
itemproperty ItemPropertyBonusSpellResistance(

int nBonus)
This item property grants a spell resistance that is set by

the IP_CONST_SPELLRESISTANCEBONUS_... constant
that is passed as the nBonus parameter.
itemproperty ItemPropertyCastSpell(

int nSpell,
int nNumUses)

This allows an item to be used to cast a spell, identified by
an IP_CONST_CASTSPELL_... constant for the nSpell
parameter. The number of uses is set via nNumUses, which
is a IP_CONST_CASTSPELL_NUMUSES_... constant that
sets the uses per day or charges per use. Potions and wands
can only be used to cast certain types of spells; these are
documented in the command notes.
itemproperty ItemPropertyContainerReducedWeight(

int nContainerType)
This property can be applied to a container item and it will

reduce the weight of objects placed inside. The reduction is
set by a IP_CONST_CONTAINERWEIGHTRED_... value
for the nContainerType parameter.
itemproperty ItemPropertyDamageBonus(

int nDamageType,
int nDamage)

When applied to a weapon, this property will inflict
increased damage nDamage of type nDamageType. The
nDamageType value is a IP_CONST_DAMAGETYPE_...
constant, but is limited to acid, bludgeon, cold, electrical,
fire, pierce, slash or sonic damage types. The amount of
damage nDamage is a IP_CONST_DAMAGEBONUS_...
constant.
itemproperty ItemPropertyDamageBonusVsAlign(

int nAlignGroup,
int nDamageType,
int nDamage)

This applies a damage bonus when attacking members of
an alignment group. The alignment group nAlignGroup is a
constant of type IP_CONST_ALIGNMENTGROUP_...,
while nDamageType and nDamage are the same parameters
used in ItemPropertyDamageBonus.

64

Item Properties

itemproperty ItemPropertyDamageBonusVsRace(
int nRace,
int nDamageType,
int nDamage)

This applies a damage bonus when attacking members of a
specific race. The race nRace is a constant of the form
IP_CONST_RACIALTYPE_..., while the two parameters
nDamageType and nDamage are the same as used in
ItemPropertyDamageBonus.
itemproperty ItemPropertyDamageBonusVsSAlign(

int nAlign,
int nDamageType,
int nDamage)

This applies a damage bonus when attacking members of a
specific alignment. The alignment nAlign is a constant
IP_CONST_ALIGNMENT_..., while nDamageType and
nDamage are the same as the parameters used in
ItemPropertyDamageBonus.
itemproperty ItemPropertyDamageImmunity(

int nDamageType,
int nImmuneBonus)

This property provides an nImmuneBonus percentage
immunity to damage of the form nDamageType. The
immunity is a IP_CONST_DAMAGEIMMUNITY_...
constant that determines the percentage. The damage type is
an IP_CONST_DAMAGETYPE_... constant, but only acid,
bludgeon, cold, electric, fire, pierce, slash and sonic damage
types are valid.
itemproperty ItemPropertyDamagePenalty(

int nPenalty)
This inflicts a penalty to damage inflicted by the item

owner. The penalty nPenalty is a positive integer between 1
and 5.
itemproperty ItemPropertyDamageReduction(

int nAmount,
int nDRSubType,
int nLimit = 0,
int nDRType = DR_TYPE_BONUS)

The item with this property will cause a reduction in the
amount of damage nAmount suffered. It will reduce damage
of the type nDRType, which is a DR_TYPE_... constant.
Depending on the value of nDRType, the damage type can
be further constrained using the nDRSubType field. (See the

command notes for details) If nLimit is non-zero, this
determines the maximum damage that can be absorbed
before the property is eliminated.
itemproperty ItemPropertyDamageResistance(

int nDamageType,
int nHPResist)

The owner of this item becomes resistant to damage of the
form nDamageType; a IP_CONST_DAMAGE_TYPE_...
constant. A IP_CONST_DAMAGE_RESIST_... is passed
as the nHPResist parameter to determine the hit points of
damage resisted.
itemproperty ItemPropertyDamageVulnerability(

int nDamageType,
int nVulnerability)

The item causes the owner to suffer increased damage of
the type nDamageType. The amount of additional damage is
set by the IP_CONST_DAMAGEVULNERABILITY_...
constant passed via the nVulnerability parameter.
itemproperty ItemPropertyDarkvision()

The owner gains the darkvision ability.
itemproperty ItemPropertyDecreaseAbility(

int nAbility,
int nModifier)

This causes a reduction nModifier in the ability score
nAbility, which is a IP_CONST_ABILITY_... constant. The
modifier nModifier is a positive integer between 1 and 10.
itemproperty ItemPropertyDecreaseAC(

int nModifierType,
int nPenalty)

This item property causes a decrease in armor class equal
to nPenalty. The type of decrease nModifierType is a
constant IP_CONST_ACMODIFIERTYPE_.... The penalty
is a positive integer between 1 and 5.
itemproperty ItemPropertyDecreaseSkill(

int nSkill,
int nPenalty)

This property causes the item to decrease the skill nSkill of
the owner by the amount nPenalty. The skill is a constant
SKILL_..., while the penalty is a positive integer from 1 to
10.
itemproperty ItemPropertyEnhancementBonus(

int nBonus)
This gives an enhancement bonus nBonus to a weapon,

65

Item Properties

which adds the bonus to the base attack and to the damage
inflicted. This bonus is a positive integer ranging from 1 to
20. As with other types of bonuses, multiple enhancement
bonuses do not stack. Instead the largest bonus is applied.
itemproperty ItemPropertyEnhancementBonusVsAlign(

int nAlignGroup,
int nBonus)

This provides a weapon enhancement bonus nBonus when
attacking creatures belonging to the alignment group
nAlignGroup, which is a global constant of the form:
IP_CONST_ALIGNMENTGROUP_.... This bonus is a
positive integer ranging from 1 to 20.
itemproperty ItemPropertyEnhancementBonusVsRace(

int nRace,
int nBonus)

This adds a weapon enhancement bonus nBonus when
attacking creatures from the racial group nRace, which is a
IP_CONST_RACIALTYPE_... constant. This bonus is a
positive integer ranging from 1 to 20.
itemproperty ItemPropertyEnhancementBonusVsSAlign(

int nAlign,
int nBonus)

This adds a weapon enhancement bonus nBonus when
attacking creatures belonging to the specific alignment
nAlign, which is an IP_CONST_ALIGNMENT_... constant.
This bonus is a positive integer ranging from 1 to 20.
itemproperty ItemPropertyEnhancementPenalty(

int nPenalty)
When this item property is applied to a weapon, it receives

a penalty nPenalty to attack rolls and the amount of damage
inflicted. The penalty is a positive integer from 1 to 5.
itemproperty ItemPropertyExtraMeleeDamageType(

int nDamageType)
This item property can be applied to a melee weapon to

change the type of the extra damage nDamageType inflicted
on an successful melee attack. The bonus damage type is a
IP_CONST_DAMAGETYPE_... constant, which is limited
to the bludgeon, pierce or slash damage types. Is this
modifier only applied to damage inflicted from a Strength
bonus?
itemproperty ItemPropertyExtraRangeDamageType(

int nDamageType)
This item property can be applied to a ranged weapon to

change the type of the extra damage nDamageType inflicted

on an successful ranged attack. The bonus damage type is a
IP_CONST_DAMAGETYPE_... constant, which is limited
to the bludgeon, pierce or slash damage types.
itemproperty ItemPropertyFreeAction()

The item gives the owner the free action ability, per that
provided by the freedom of movement spell.
itemproperty ItemPropertyHaste()

The owner of this item gains the haste ability, per that
provided by the wizard spell haste.
itemproperty ItemPropertyHealersKit(

int nModifier)
This item functions as a healer's kit of level nModifier,

which is a positive integer from 1 to 12.
itemproperty ItemPropertyHolyAvenger()

This item property makes the weapon function like a holy
avenger item. The specific benefits of this are not detailed.
itemproperty ItemPropertyImmunityMisc(

int nImmunityType)
The owner of the item imbued with this property gains

immunity to a miscellaneous effect of type nImmunityType,
which is a IP_CONST_IMMUNITYMISC_... constant. The
immunity types include, paralysis, poison, knockdown, fear,
disease and backstab.
itemproperty ItemPropertyImmunityToSpellLevel(

int nLevel)
This property grants the item owner immunity to all spells

up to level nLevel. The level is a positive integer from 1 to
9.
itemproperty ItemPropertyImprovedEvasion()

The item grants the owner the improved evasion special
ability, as per the rogue special ability.
itemproperty ItemPropertyKeen()

A weapon with this property has its critical threat range
doubled. Thus a threat range of 19-20 changes to 17-20.
itemproperty ItemPropertyLight(

int nBrightness,
int nColor)

This causes an item to radiate light with the intensity
nBrightness and hue nColor. The brightness parameter is a
constant of the form IP_CONST_LIGHTBRIGHTNESS_...,
which defines the radius of the light:

66

Item Properties

• Dim ‒ 5m
• Low ‒ 10m
• Normal ‒ 15m
• Bright ‒ 20m

The hue is a IP_CONST_LIGHTCOLOR_... constant.
itemproperty ItemPropertyLimitUseByAlign(

int nAlignGroup)
This property will limit the creatures that can use this item

to members of the alignment group nAlignGroup, which is a
IP_CONST_ALIGNMENTGROUP_... constant. If there
are multiple such properties, the use is limited to members
of the union of all the groups. It is possible to overcome this
restriction with a suitable rank in the Use Magic Device
skill.
itemproperty ItemPropertyLimitUseByClass(

int nClass)
If a creature has a level in the class nClass, it can use this

item. The class is a IP_CONST_CLASS_... constant. If
there are multiple such properties, the use is limited to
members of the union of all the groups. Note that it is
possible to overcome this restriction with a suitable rank in
the Use Magic Device skill.
itemproperty ItemPropertyLimitUseByRace(

int nRace)
Creatures belonging to the race nRace can use this item.

The class is a IP_CONST_RACIALTYPE_... constant. If
there are multiple such racial restrictions applied, the item
use is limited to members of the union of all the groups.
Note that it is possible to overcome this restriction with a
suitable rank in the Use Magic Device skill.
itemproperty ItemPropertyLimitUseBySAlign(

int nAlignment)
This item property restricts the use of this item to creatures

belonging to the alignment nAlignment, which is a constant
of the form IP_CONST_ALIGNMENT_.... If there are
multiple such alignment restrictions applied, the item use is
limited to members of the union of all the groups. Note that
it is possible to overcome this restriction with a suitable
rank in the Use Magic Device skill.

itemproperty ItemPropertyMassiveCritical(
int nDamage)

This item property inflicts additional damage nDamage on
a successful critical hit. The damage is a global constant of
the form IP_CONST_DAMAGEBONUS_..., which applies
a constant or random damage bonus.
itemproperty ItemPropertyMaxRangeStrengthMod(

int nModifier)
Application of this item property allows a strength

modifier to a ranged attack. This modifier is limited to a
maximum of nModifier, which is a positive integer between
1 and 20.
itemproperty ItemPropertyMonsterDamage(

int nDamage)
This property is specifically for use with a monster's

natural weapons, such as a claw or bite. It specifies the
damage nDamage inflicted by the natural weapon as a
global constant IP_CONST_MONSTERDAMAGE_....
itemproperty ItemPropertyNoDamage()

When applied to a weapon, this property causes the item to
inflict no damage in combat. This is useful for balancing
weapons that have special powers that are activated on a
successful hit. See, for example, the two functions below.
itemproperty ItemPropertyOnHitCastSpell(

int nSpell,
int nLevel)

When this is applied to a weapon, it will cast the spell
nSpell at level nlevel when an opponent is struck. For
armor, it will cast the spell nSpell when the wearer is hit by
an attack. The spell is a global constant of the form
IP_CONST_ONHIT_CASTSPELL_....

Note that this item property can not be added to a ranged
weapon such as a crossbow, even if it is applied via an On
Acquire script.
itemproperty ItemPropertyOnHitProps(

int nProperty,
int nSaveDC,
int nSpecial = 0)

This item property applies an effect determined by the
value nProperty, which is a subset of the global constants
IP_CONST_ONHIT_.... (The list of effects is available in
the command notes.) The save difficulty class to negate the

67

Item Properties

effect is nSaveDC. Some of the effects require an additional
parameter that is passed in the nSpecial field. For example,
the IP_CONST_ONHIT_ABILITYDRAIN property will
drain the IP_CONST_ABILITY_... ability passed in the
nSpecial field.
itemproperty ItemPropertyOnMonsterHitProperties(

int nProperty,
int nSpecial = 0)

This can be used to apply an effect to a natural monster
weapon, such as slam or gore. The effect nProperty is a
constant IP_CONST_MONSTERHIT_.... Some effects
require that a second value be passed via the nSpecial
parameter. For example, if nProperty is set to the constant
IP_CONST_MONSTERHIT_DISEASE, the nSpecial is a
DISEASE_... constant that determines the disease type.
itemproperty ItemPropertyReducedSavingThrow(

int nBonusType,
int nPenalty)

When applied to an item, this property will apply a penalty
nPenalty to saving throws of the type nBonusType. The type
is a IP_CONST_SAVEBASETYPE_... constant, while the
penalty is a positive integer from 1 to 20.
itemproperty ItemPropertyReducedSavingThrowVsX(

int nBaseSaveType,
int nPenalty)

This property will reduce the saving throw by nPenalty
against a type nBaseSaveType of effect or damage. The
saving throw reduction is a positive integer from 1 to 20.
itemproperty ItemPropertyReduction(

int nRegenAmount)
The owner of this item benefits from a regeneration ability

that heals nRegenAmount per time interval.
itemproperty ItemPropertySkillBonus(

int nSkill,
int nBonus)

The item with this property grants a bonus nBonus to the
skill nSkill. The skill is a SKILL_... constant, while the
bonus is a positive integer from 1 to 50.
itemproperty ItemPropertySpecialWalk(

int nWalkType = 0)
This property causes the item owner to perform a special

walk animation of the type nWalkType. A value of zero will
cause a zombie walk animation. No other types are listed.

itemproperty ItemPropertySpellImmunitySchool(
int nSchool)

The owner of this item gains immunity to spells from the
nSchool magic school. The school is specified by a constant
of the form IP_CONST_SPELLSCHOOL_.... This matches
a row in the 'iprp_spellcost.2da' file.
itemproperty ItemPropertySpellImmunitySpecific(

int nSpell)
This item property grants the owner immunity to the spell

nSpell, which is a IP_CONST_IMMUNITYSPELL_...
constant. Note that not every spell has a matching constant.
The available immunities are listed in 'iprp_spellcost'. To
provide immunity to a spell that is not on the list, you can
apply an EffectSpellImmunity effect via a tag-based script.
itemproperty ItemPropertyThievesTools(

int nModifier)
This provides a thieves tools item property with the

modifier nModifier, which is a positive constant from 1 to
12. It provides a bonus while unlocking doors and chests.
itemproperty ItemPropertyTrap(

int nTrapLevel,
int nTrapType)

This returns a Trap item property. The nTrapLevel is one
of the global constants IP_CONST_TRAPSTRENGTH_...,
which can be minor, average strong or deadly. The
nTrapType is a constant IP_CONST_TRAPTYPE_....
itemproperty ItemPropertyTrueSeeing()

This property gives the item owner true seeing, per the
true seeing wizard spell.
Itemproperty ItemPropertySpellTurnResistance(

int nModifier)
This gives a bonus nModifier to resist the cleric class turn

undead ability.
Itemproperty ItemPropertyUnlimitedAmmo(

int nAmmoDamage =
 IP_CONST_UNLIMITEDAMMO_BASIC)

This property provides unlimited use of an ammunition
type. The nAmmoDamage parameter can be used to specify
a special damage type by passing one of the
IP_CONST_UNLIMITEDAMMO_... constants.
Itemproperty ItemPropertyVampiricRegeneration(

int nRegenAmount)
This property provides vampiric regeneration to the

68

Item Properties

maximum amount nRegenAmount per time unit, which is a
positive integer from 1 to 20.
itemproperty ItemPropertyVisualEffect(

int nEffect)
For a melee weapon, this will create a visual effect

nEffect, which is a ITEM_VISUAL_... constant. The
available types are acid, cold, electric, evil, fire, holy and
sonic.
itemproperty ItemPropertyWeightIncrease(

int nWeight)
This property causes an item weight increase nWeight,

which is an IP_CONST_WEIGHT_INCREASE_...
constant. This increase is a fixed number of weight in
English pounds, rather than a proportion of the item weight.
Note that this property to a suit of armor does not increase
the weight.
itemproperty ItemPropertyWeightReduction(

int nReduction)
This property causes an item weight decrease nReduction,

which is an IP_CONST_REDUCED_WEIGHT_...
constant. The reduction is as a percentage of the total
weight.

Layout

The geography of the game is determined by a set of one
or more areas that are organized into modules. A campaign
consists of one or modules strung together in a sequence.
The following routines are used to query and manage each
of these organizational structures.

Areas

void ExploreAreaForPlayer(
object oArea,
object oPlayer,
int nExplored = TRUE)

If this is called with nExplored set to true, it will expose
the entire map of the area oArea to the player oPlayer. This
only works for interior areas as exterior areas are
automatically explored.
object GetArea(object oTarget)

This returns the area object where oTarget is currently
located.
object GetAreaFromLocation(location locAt)

This returns the area object where the location locAt is
positioned.
int GetAreaSize(

int nAreaDimension,
object oArea = OBJECT_IVNALID)

If nAreaDimension is set to AREA_HEIGHT, this will
return the length of the area oArea as a number of tiles.
Setting nAreaDimension to AREA_WIDTH returns the
width in tiles. If the oArea is invalid, this routine will return
the dimensions of the area that contains the object calling
the routine.
object GetFirstArea()
This call returns the first area in the current module. It
initializes the list of objects returned by GetNextArea.
int GetIsAreaAboveGround(object oArea)

If oArea is a valid area, this routine will return the
constant AREA_ABOVEGROUND if the area has it's
Underground property set to false. Otherwise it will return
AREA_UNDERGROUND if the property is set to true.

69

Layout

int GetIsAreaInterior(
object oArea = OBJECT_INVALID)

If oArea is a valid area, this will return true if either the
Interior or Underground properties are set to true.
int GetIsAreaNatural(object oArea)

If the area oArea has the Natural property set to true, this
will return AREA_NATURAL. Otherwise it will return
AREA_ARTIFICIAL. If oArea is not a valid area, this
routine will return AREA_INVALID.
int GetIsOverlandMap(object oArea)

If oArea is a valid area, this will return true if the area is
flagged for use as an overland map.
object GetNextArea()

This routine will return the object representing the next
area in the current module, or OBJECT_INVALID when it
reaches the end of the list. The iteration is reset by a call to
GetFirstArea.
object GetWaypointByTag(

string sWaypointTag)
This call returns the first waypoint with the tag

sWaypointTag, or an invalid object if there was no match.
void JumpPartyToArea(

object oPartyMember,
object oDestination)

The party containing the party member oPartyMember is
jumped to the object oDestination. If this is in a different
area, that area's Load Screen will be displayed while it is
loading, then the 'On Client Enter Script' will be run once
the party has finished moving to the destination. If the party
is already in the area, the result is a jump to oDestination
that does not trigger the 'On Client Enter Script'. See the
FiredFromPartyTransition routine.
void SetAreaTransitionBMP(

int nPredefinedAreaTransition,
string sCustomAreaTransitionBMP =
 "")

This causes a custom bitmap to be displayed during an
area transition. The nPredefinedAreaTransition parameter is
a AREA_TRANSITION_... constant that causes the
matching predefined bitmap to be displayed. However, if it
is set to AREA_TRANSITION_USER_DEFINED, the
bitmap filename passed via sCustomAreaTransitionBMP is

used instead.
void SetMapPinEnabled(

object oMapPin,
int nEnabled)

If oMapPin is a waypoint object, then this call will set the
map note enabled tag state to nEnabled. For an example,
see the 'gtr_enable_map_note' script.
void SetRenderWaterInArea(

object oArea,
int bRender)

If bRender is true, this routine causes the water planes in
the area oArea to be displayed. Otherwise the water planes
are hidden.

Subareas

A sub-area is an encounter region, trigger region or an area
of effect object. See the 'Area of Effect' section of Effects.
object GetFirstSubArea(

object oArea,
vector vPosition)

This call returns the first sub-area in the area oArea at the
vector location vPosition. Multiple overlapping sub-areas
can occur at a position.
int GetIsInSubArea(

object oCreature,
object oSubArea = OBJECT_SELF)

If the creature oCreature has triggered the 'On Enter
Script' event for a sub-area oSubArea, this routine will
return true. Note that the creature does not need to remain
located in the sub-area for this to return true.
object GetNextSubArea(

object oArea)
Once GetFirstSubArea has been called in the area oArea,

this routine will return the next sub-area at the same vector
position as the first.

Campaigns

In the following calls, if you pass a player object as
oPlayer, the variable will pertain to that player.

70

Layout

void DeleteCampaignVariable(
string sCampaignName,
string sVarName,
object oPlayer = OBJECT_INVALID)

This will flag the variable with the name sVarName from a
campaign database sCampaignName. The variable type
does not matter, as the name must be unique.
void DestroyCampaignDatabase(

string sCampaignName)
This call will delete the campaign database with the name

sCampaignName. If the database does not exist, nothing
happens.
{type} GetCampaign{Type} (

string sCampaignName,
string sVarName,
object oPlayer = OBJECT_INVALID)

This will read a variable sVarName of type {type} from a
campaign database with the name sCampaignName. Valid
types are float, int, location, string and vector. The variable
name must be unique in the database; you can not use
different variable types with the same name. If oPlayer is
provided, then the variable will pertain to that particular
player.
void PackCampaignDatabase(

string sCampaignName)
This removes any records that have been marked for

deletion from the campaign database sCampaignName. The
DeleteCampaignVariable routine can be used to delete
individual campaign variables.
object RetrieveCampaignObject(

string sCampaignName,
string sVarName,
location locLocation,
object oOwner = OBJECT_INVALID,
object oPlayer = OBJECT_INVALID)

This call will retrieve a creature or item object that was
stored under the name sVarName from the campaign
database sCampaignName. If a creature oOwner is
specified, the call will try to place the object in the
creature's inventory. Otherwise it will be placed on the
ground. When oObject is invalid, the object will appear at
the location locLocation. See StoreCampaignObject.

{type} SetCampaign{Type} (
string sCampaignName,
string sVarName,
{type} tValue,
object oPlayer = OBJECT_INVALID)

This will write a variable sVarName of type {type} to a
campaign database with the name sCampaignName. Valid
types are float, int, location, string and vector. The variable
name must be unique in the database; you can not use
different variable types with the same name. If you pass a
player object as oPlayer, the variable will pertain to that
player.
int StoreCampaignObject(

string sCampaignName,
string sVarName,
object oObject,
object oPlayer = OBJECT_INVALID)

This routine can be used to store a creature or item object
oObject as a variable with the name sVarName in the
campaign database sCampaignName. If the operation is
successful, this routine will return true. Use the routine
RetrieveCampaignObject to recover the object.

Modules

See also the Module Item Scripts section.
object GetModule()

Get the object representing the module. It returns
OBJECT_INVALID on an error.
string GetModuleName()

This returns the module name for the language of the
server where it is running.
int GetModuleXPScale()

This returns the 'XP Scale' property for the current
module. The default value is 10.
void LoadNewModule(

string sModuleName,
string sWaypoint = “”)

This routine saves out the state of the currently running
module then shuts if down and launches the sModuleName
module. All of the connected players are moved to the
starting location of the new module. If sWaypoint is not a
null string, then the party is positioned at the waypoint that

71

Layout

has this tag. See StartNewModule.
void SetModuleXPScale(

int nXPScale)
This modifies the experience point scale for the running

module to nXPScale, which is an integer between 0 and
200. The default value is 10, but this can be changed in the
XP Scale property field. The modified XP scale is preserved
across saves.
void StartNewModule(

string sModuleName,
string sWaypoint = “”)

This is similar to the LoadNewModule routine, except that
the currently running module is not saved.

Objects

This sections describes functions that are used for non-
static objects, including especially doors and placeables.
Some object types are covered in more detail within their
own sections. See Creatures, Inventory and Layout.
object CreateObject(

int nObjectType,
string sTemplate,
location locAt,
int bUseAppearAnimation = FALSE
string sNewTag = “”)

This call will create an object of type nObjectType at
location locAt using a blueprint template resource reference
string equal to sTemplate. The nObjectType is a constant of
type OBJECT_TYPE_..., but this is limited to a creature,
item, placeable, store or waypoint. (Note that this does not
include a door type.) If bUseAppearAnimation is true, then
the object will gradually fade into view rather than suddenly
appearing. If sNewTag is a non-empty string, then the object
will be given that as its tag rather than the default.

In the particular instance of the 'Ipoint' placeable from the
MISC PROPS, note that there is an extra space at the end of
the resource reference (and the tag) in the blueprint. Thus,
when calling CreateObject to create an 'Ipoint', the
sTemplate string should be set to "plc_ipoint ".
Otherwise, you will get an invalid object.
object CopyObject(

object oSource,
location locAt,
object oOwner = OBJECT_INVALID,
string sNewTag = “”)

If object oSource is a valid creature or item, this call will
produce a duplicate at location locAt. If the object is an item
and oOwner is valid, then the item will be placed into
oOwner's inventory. If sNewTag is a non-empty string, then
the object will be given that as its tag rather than the default.
void DestroyObject(

object oDestroy,
float fDelay = 0.0f,
int nDisplayFeedback = TRUE)

After a delay of fDelay seconds, this will irrevocably

72

Objects

destroy a non-static object oDestroy, such as a creature or
item. If the item is in the inventory of a PC, setting
nDisplayFeedback to true will cause a notice to appear in
the chat window. This call has no effect on areas or
campaigns.

For sound objects that are currently playing, you will first
need to call SoundObjectStop before destroying the object.
Otherwise, the sound will keep running in the game.
int PlayCustomAnimation(

object oObject,
string sAnimationName,
int nLooping,
float fSpeed = 1.0f)

This will cause a valid object oObject to play the
animation file sAnimationName, which should be a gr2 file.
If nLooping is true, then the animation will loop. The
fSpeed parameter controls the rate of play for the animation,
with the default at 1.0 and negative values causing the
animation to play in reverse.

The 'ga_play_custom_animation' script describes several
special symbols that can be passed in the sAnimationName
field. In particular, '*' at the start of the name will fill in the
prefix of an animation. A '%' will reset the creature to its
default animation. A list of potential animation files can be
seen in 'nwn2_animstan.2da' and combat animations in
'nwn2_animcom.2da. (The actual gr2 files are located under
the lod-merged folders of the NWN2 installation directory,
with names such as 'P_HHM_sneak.gr2'.)

Get Objects
object GetFirstObjectInArea(

object oArea = OBJECT_INVALID)
This will return the first member of the list of objects

located within the area oArea. If oArea is invalid, this will
use the area where the calling object is located. See
GetNextObjectInArea.

Object GetFirstObjectInShape(
int nShape,
float fSize,
location locTarget,
int bLineOfSight = FALSE,
int nObjectFilter =

OBJECT_TYPE_CREATURE,
 vector vOrigin = [0.0,0.0,0.0])

This function finds the first object inside a geometric
volume defined by nShape and fSize.

nShape fSize

SHAPE_SPHERE Sphere radius

SHAPE_SPELLCYLINDER Cylinder length

SHAPE_CONE Widest radius of cone

SHAPE_CUBE ½ the length of a side

The locTarget parameter defines the center of the shape. If
bLineOfSight, only objects that are within the line of sight
of the locTarget are returned. The nObjectFilter is a integer
containing OR'd bit flags, as defined by
OBJECT_TYPE_..., that are used to filter the selected
objects. For example:
nObjectFilter =
 OBJECT_TYPE_CREATURE | OBJECT_TYPE_DOOR
will only select creatures or doors. The vOrigin is used for
cylinders and cones to establish the origin of the effect.

Example script: 'nw_s0_fireball'.
object GetNearestObject(

int nObjectType = OBJECT_TYPE_ALL,
object oTarget = OBJECT_SELF,
int nNth = 1)

This returns the nNth nearest object of type nObjectType
to the object oTarget. The object type is a global constant of
type OBJECT_TYPE_.... If no object matching the criteria
is found, this returns an invalid object.
object GetNearestObjectByTag(

string sTag,
object oTarget = OBJECT_SELF,
int nNth = 1)

This returns the nNth closest object with the tag sTag to
the object oTarget.

73

Objects

object GetNearestObjectByLocation(
string sTag,
location locAt,
int nNth = 1)

This returns the nNth closest object with the tag sTag to
the location locAt.
object GetNextObjectInArea(

object oArea = OBJECT_INVALID)
After GetFirstObjectInArea has been called on the area

oArea, this will return the next object in the area each time
it is called. When the list is exhausted, it will return an
invalid object.
Object GetNextObjectInShape(

int nShape,
float fSize,
location locTarget,
int bLineOfSight = FALSE,
int nObjectFilter =

OBJECT_TYPE_CREATURE,
 vector vOrigin = [0.0,0.0,0.0])

This function finds the next object inside a geometric
volume defined by nShape and fSize. See
GetFirstObjectInShape for an explanation of the parameters.
Calling GetFirstObjectInShape reinitializes the search
sequence. Example script: 'nw_s0_fireball'.
object GetObjectByTag(

string sTag,
int nNth=0)

There can be multiple instances of objects with tag string
sTag. This function returns the Nth instance of an object
with tag sTag. This returns a valid result for nNth equal to
one of 0, 1, ... n-1, where n is the number of objects with the
matching tag.

If there is no match, it returns OBJECT_INVALID. If
nNth is not specified, 0 is used.

Management

void SetDescription(
object oTarget,
string sDescription)

This will change the description of the object oTarget to
sDescription. This only functions for creatures, items and

placeables.
void SetFirstName(

object oTarget,
string sFirstName)

If oTarget is a valid object, this routine will set the first
name of that object to sFirstName. This can be useful when
you want to change the name of a creature as a result of a
conversation. For an example, see the 'ga_first_name_set'
script.
void SetHardness(

int nHardness,
object oObject)

If oObject is a door or placeable, this will set the hardness
rating to nHardness, which must be an integer between 0 an
250.
void SetLastName(

object oTarget,
string sLastName)

If oTarget is a valid object, this routine will set the last
name of that object to sLastName. For an example, see the
'ga_last_name_set' script.
void SetPlotFlag(

object oTarget,
int bPlotFlag)

This call will change the 'Plot' property of the object
oTarget to bPlotFlag.
void SetScale(

object oObject,
float fX,
float fY,
float fZ)

This will change the base scale for the object oObject to
the fX, fY, and fZ scales. By default these are set to 1.0
unless modified in the blueprint or another SetScale call.

Immediate Actions
void JumpToLocation(

location locDest)
The calling object is jumped to the location locDest. This

action is inserted at the top of the action queue.

74

Objects

void JumpToObject(
object oJumpTo,
int nWalkStraightLineToPoint = 1)

The calling object is jumped to the location of the object
oJumpTo. The variable nWalkStraightLineToPoint is
undocumented. This action is inserted at the top of the
action queue.
void PlayAnimation(

int nAnimation,
float fSpeed = 1.0f,
float fSeconds = 0.0)

This call functions like ActionPlayAnimation, except the
calling object executes the animation immediately. It causes
the subject to move their body according to the animation
nAnimation. Valid animations are specified by the
ANIMATION_... constants, which are subdivided into fire-
and-forget and looping-type animations. The speed of the
animation is multiplied by fSpeed, and the duration of a
looping animation is fDuration seconds. The fire-and-forget
animations ignore the fDuration parameter.

Note that the PC races have most of the animations
implemented, but not all creatures will perform all
animations.
void SpeakString(

string sStringToSpeak,
int nVolume = TALKVOLUME_TALK)

The creature will immediately speak the string
sStringToSpeak at the volume nVolume. Valid values for the
volume are defined by the TALKVOLUME_... constants.
void SpeakStringByStrRef(

int nStrRef,
int nVolume = TALKVOLUME_TALK)

This will look up a string by reference nStrRef from the
talk table then immediately cause the caller to speak it as
per SpeakString at the volume nVolume. Valid values for
the volume are defined by the TALKVOLUME_...
constants.

Properties

string GetDescription(
object oTarget)

This returns a string containing a description of the valid

object oTarget. This only functions for creatures, items and
placeables.
string GetFirstName(object oTarget)

This will return the first name of object oTarget. Valid
objects are creatures, items and placeables. See also
GetLastName.
int GetHardness(object oObject)

If oObject is a door or placeable, this will return the
hardness rating. For other objects, this will return 0.
int GetHasInventory(object oObject)

This returns true if the object oObject has an inventory.
Creatures, stores and containers can have an inventory.
int GetIsObjectValid(object oObject)

This function returns true only if oObject is a valid object.
string GetLastName(object oTarget)

This will return the last name of object oTarget. Valid
objects are creatures, items and placeables. See also
GetFirstName.
string GetName(object oObject)

For a valid object oObject, this will return the object's full
name.
int GetObjectType(object oTarget)

This call will return the type of a valid object oTarget as a
constant OBJECT_TYPE_.... If the object is invalid it will
return -1.
vector GetPosition(object oTarget)

If oTarget is a valid object, this will return the position of
the object as a vector. Otherwise, it will return a zero-length
vector, [0.0, 0.0, 0.0].
int GetPlotFlag(

object oTarget = OBJECT_SELF)
If oTarget is a valid target, this will return true if the

object has the 'Plot' property set to true.
string GetResRef(object oObject)

This call returns the name of the resource reference of the
template that was used to create the object oObject. An
empty string is returned when there is no template, such as
when the object is invalid.

75

Objects

float GetScale(
object oObject,
int nAxis)

When nAxis is set to a constant SCALE_..., this call will
return the scale of the base object along that axis. Thus, for
an nAxis value of SCALE_X, this will return the scale along
the X axis. This does not include the effects of a
EffectSetScale on the object dimensions.
string GetTag(object oObject)

This call returns the identifying tag of the object oObject.
If oObject is not a valid object, this call returns an empty
string.

Obstacles

These routines apply to doors, placeables and traps. See
also the Saving Throws section.
void DoPlaceableObjectAction(

object oPlaceable,
int nPlaceableAction)

This routine causes the object calling this routine to
perform the action nPlaceableAction on the placeable object
oPlaceable. Valid actions are PLACEABLE_ACTION_...
constants.
int GetIsOpen(object oObject)

If oObject is a door or placeable, this will return true if it
is currently open.
int GetIsPlaceableObjectActionPossible(

object oPlaceable,
int nPlaceableAction)

This routine will return true only if the action
nPlaceableAction can be performed on the placeable
oPlaceable. The action is a PLACEABLE_ACTION_...
constant.
object GetTransitionTarget(

object oTransition)
If oTransition is a door or a trigger that is configured for a

transition, this call will return the destination. The resulting
object is a door or a waypoint.
int GetUseableFlag(

object oObject = OBJECT_SELF)
If oObject is a valid object, this will return true if the

'Usable?' property is set to true.
void SetFortitudeSavingThrow(

object oObject,
int nNewFortSave)

This is used to change the fortitude saving throw modifier
nNewFortSave on a door or placeable oObject. Valid values
for the fortitude save are integers from 0 to 250. This has no
effect on other object types. See GetFortitudeSavingThrow
and FortitudeSave.
void SetReflexSavingThrow(

object oObject,
int nNewRefSave)

This is used to change the reflex saving throw modifier

76

Obstacles

nNewRefSave on a door or placeable oObject. Valid values
for the reflex save are integers from 0 to 250. This has no
effect on other object types. See GetReflexSavingThrow
and ReflexSave.
void SetUseableFlag(

object oObject = OBJECT_SELF,
int bUseableFlag)

For a non-static object oObject, this will set the 'Useable?'
property to bUseableFlag. When true, the player will be
able to click on the object and interact with it.
void SetWillSavingThrow(

object oObject,
int nNewWillSave)

This is used to change the willpower saving throw
modifier nNewWillSave on a door or placeable oObject.
Valid values for the willpower save are integers from 0 to
250. This has no effect on other object types.

Doors

See also GetLastClosedBy.
void DoDoorAction(

object oDoor,
int nDoorAction)

The action nDoorAction, a DOOR_ACTION_... constant,
is performed on the door oDoor. Valid actions include bash,
knock, open and unlock.
object GetBlockingDoor()

This call returns the door object that last blocked the
progress of the calling object. That is, the last door that was
opened, unlocked, disabled or bashed.
int GetIsDoorActionPossible(

object oTargetDoor,
int nDoorAction)

This routine will return true only if the action
nDoorAction can be performed on the door oTargetDoor.
The action is a DOOR_ACTION_... constant.
void UnlinkDoor(object oDoor)

This routine modifies a door oDoor so that it no longer
serves as a transition link to another area. Once the door is
unlinked, it can be deleted.

Lock

The following routines apply to doors and certain
placeables. See also GetLastLocked and GetLastUnlocked.
string GetKeyRequiredFeedbackMessage(

object oObject)
This will return the feedback message that a player will

receive when they try to open the object oObject without
having the required key in their inventory.
int GetLocked(object oTarget)

This will return true only if oTarget is a valid lockable
object and is currently locked.
int GetLockKeyRequired(object oTarget)

This will return true if the door or placeable oTarget has
the KeyRequired property set.
string GetLockKeyTag(object oTarget)

This returns the tag of an object that is required to unlock
the object oTarget. For a door this is the 'Key Tag' property,
while for a placeable this is the KeyName.
int GetLockLockable(object oObject)

Both doors and placeables have a Lockable property that
indicates whether the object is lockable. This routine will
return the current state of the Lockable property for the
object oObject.
int GetLockLockDC(object oObject)

This call will return the 'Open Lock DC' of the door or
placeable oObject. This is the difficulty class of an open
lock skill check to unlock the object.
int GetLockUnlockDC(object oObject)

This call will return the 'Close Lock DC' of the door or
placeable oObject. This is the difficulty class of an open
lock skill check to lock the object.
void SetKeyRequiredFeedbackMessage(

object oObject,
string sFeedback)

If oObject is a door or placeable that requires a key to
open, this call will cause the message sFeedback to be
displayed when a player tried to open the door without the
proper key in their inventory.

77

Obstacles

void SetLocked(
object oObject,
int bLocked)

This call sets the Locked property of the door or placeable
object oObject to the boolean bLocked.
void SetLockKeyRequired(

object oObject,
int bKeyRequired = TRUE)

This will set the KeyRequired property of the door or
placeable oTarget. If true, a key is required to open the
object. See SetLockKeyTag.
void SetLockKeyTag(

object oObject,
string sKeyTag)

If the object oObject has been configured to require a key
to open, this routine will set the tag sKeyTag of the key
required to unlock the door or placeable.
void SetLockLockable(

object oObject,
int bLockable = TRUE)

This call sets the state of the Lockable property for a door
or placeable oObject to bLockable. When true, the object
can be locked.
void SetLockLockDC(

object oObject,
int nNewLockDC)

This call will set the 'Open Lock DC' of the door or
placeable oObject to nNewLockDC, a value between 0 and
250. This is the difficulty class of an open lock skill check
to unlock the object.
void SetLockUnlockDC(

object oObject,
int nNewUnlockDC)

This call will set the 'Close Lock DC' of the door or
placeable oObject to nNewUnlockDC, a value between 0
and 250. This is the difficulty class of an open lock skill
check to lock the object.

Traps

Only doors, placeables or triggers can be trapped objects.
See also ItemPropertyTrap in the Item Properties section
and the GetLastDisarmed routine.

object CreateTrapAtLocation(
int nTrapType,
location locAt,
float fSize = 2.0f,
string sTag = “”,
int nFaction
 = STANDARD_FACTION_HOSTILE,
string sOnDisarmScript = “”,
string sOnTrapTriggered = “”)

This creates a square trap of type nTrapType with the tag
sTag centered on the location locAt. Valid types are global
constants TRAP_BASE_TYPE_.... The trap belongs to the
faction nFaction, which is a global constant
STANDARD_FACTION_.... If sOnDisarmScript is not an
empty string, the object will run this script when the trap is
disarmed. If sOnTrapTriggered is not an empty string, the
object will run this script when the trap is triggered.

The properties of the created trap is determined by the
values in the traps.2da file.
object CreateTrapOnObject(

int nTrapType,
object oObject,
int nFaction,
 = STANDARD_FACTION_HOSTILE,
string sDisarmScript = “”,
string sOnTrapTriggered = “”)

This will create a trap on the door or placeable oObject of
type nTrapType. Valid types for the latter are global
constants TRAP_BASE_TYPE_.... The trap belongs to the
faction nFaction, which is a global constant
STANDARD_FACTION_.... If sOnDisarmScript is not an
empty string, the object will run this script when the trap is
disarmed. If sOnTrapTriggered is not an empty string, the
object will run this script when the trap is triggered.

The properties of the created trap is determined by the
values in the traps.2da file.
int GetIsTrapped(object oObject)

This returns true if the door or object oObject is trapped.
object GetLastTrapDetected(

object oTarget = OBJECT_SELF)
This returns the last trap to be detected by the target

oTarget.

78

Obstacles

object GetNearestTrapToObject(
object oTarget = OBJECT_SELF,
int nTrapDetected = TRUE)

This will find the nearest trap to the target oTarget, in the
current area. If nTrapDetected is true, this will only return
the nearest trap that has been detected by oTarget.
int GetTrapActive(object oObject)

If oObject is an active trap, then this will return true. Use
SetTrapActive to change the active setting.
int GetTrapBaseType(object oTrap)

This call will return the base trap type on the object oTrap.
This is a constant matching one of TRAP_BASE_TYPE_....
object GetTrapCreator(object oTrap)

This will return the creature object that created the trap
oTrap. Traps created by the toolset will return a value of
OBJECT_INVALID.
int GetTrapDetectable(object oTrap)

This returns true if the 'TrapDetectable?' property on the
object oTrap is true. Use SetTrapDetectable to change the
property.
int GetTrapDetectDC(object oTrap)

This returns the value of the 'Trap Detect DC' property of
the trapped object oTrap. This is the difficulty class of a
Search skill check to find the trap. Use SetTrapDetectDC to
change this value.
int GetTrapDetectedBy(

object oTrap,
object oCreature)

This returns true if the creature oCreature has detected the
trap oTrap.
int GetTrapDisarmable(object oTrap)

This returns true only if the 'Trap Disarmable?' property is
set to true on the trapped object oTrap.
int GetTrapDisarmDC(object oTrap)

This call will return the difficulty class for disarming the
trap oTrap.
int GetTrapFlagged(object oTrap)

The notes for this script say that it returns true if the trap
oTrap has been flagged as visible to all creatures. How is a
trap flagged to be visible to all?

string GetTrapKeyTag(object oTrap)
This returns the tag of the key that will disarm the trap

oTrap. The tag can be set by a call to SetTrapKeyTag. Is
this the same as the key needed to open a door or
placeable? What about a key for a trigger?
int GetTrapOneShot(object oTrap)

This returns true if the trap oTrap does not reset after it
has been triggered. This can be changed by a call to the
function SetTrapOneShot.
int GetTrapRecoverable(object oTrap)

If the TrapRecoverable property is set to true on the trap
oTrap, this call will return true. Per the game manual, a trap
can be recovered on a Disable Trap skill check at the base
disarm DC plus 10. Use SetTrapRecoverable to change this
property.
void SetTrapActive(

object oTrap,
int bActive)

This call sets the active state of the trap oTrap to bActive.
Use GetTrapActive to get the current state.
void SetTrapDetectable(

object oTrap,
int bDetectable = TRUE)

This will set the detectability of the trap oTrap to the value
of bDetectable. Use GetTrapDetectable to get the current
setting.
void SetTrapDetectDC(

object oTrap,
int nDetectDC)

This call with change the difficulty class of a Search skill
check needed to detect the trap oTrap. Use the
GetTrapDetectDC call to get the current value.
int SetTrapDetectedBy(

object oTrap,
object oDetector)

This call will mark the creature oDetector as having
detected the trap oTrap. Use the GetTrapDetectedBy call to
find out who detected a trap.
void SetTrapDisabled(

object oTrap
This will disable the trap oTrap. As a consequence the trap

is deleted on a trigger, or removed from a placeable or door.

79

Obstacles

A call to GetIsTrapped on the object will return false.
void SetTrapDisarmable(

object oTrap,
int bDisarmable = TRUE)

This call will set the 'Trap Disarmable?' property on a
trapped object oTrap to bDisarmable. A call to
GetTrapDisarmable will return the current setting.
void SetTrapDisarmDC(

object oTrap,
int nDisarmDC)

This routine will change the disarm difficult class of the
trap oTrap to nDisarmDC. Use GetTrapDisarmDC to get
the current value of the Disarm DC.
void SetTrapKeyTag(

object oTrap,
string sKeyTag)

Use this routine to make the object with the tag sKeyTag a
key to disarm the trap oTrap. The current key tab is
returned by GetTrapKeyTag.
void SetTrapOneShot(

object oTarget,
int bOneShot = TRUE)

If bOneShot is true, this call will cause the trap oTarget to
only fire once. Otherwise it will reset after being triggered.
Use the GetTrapOneShot call to determine if a trap is
currently one-shot.
void SetTrapRecoverable

object oTrap,
int bRecoverable = TRUE)

If bRecoverable is true, a character can use a successful
Disable Trap as DC plus 10 skill check to recover the trap
oTrap. Use GetTrapDetectable to get the current setting.

Talents

See also the descriptions for ActionUseTalentAtLocation
and ActionUseTalentOnObject.
int GetCreatureHasTalent(

talent tTalent,
object oCreature = OBJECT_SELF)

This routine is intended to return a boolean state that
indicates whether the creature oCreature has the talent
tTalent. However, this call crashed the game when passed a
talent generated by TalentSpell.
talent GetCreatureTalentBest(

int nCategory,
int nCRMax,
object oCreature = OBJECT_SELF,
int nExcludedTalentsFlag = 0)

This call searches through the talents possessed by the
creature oCreature in the category nCategory and looks for
the talent with the highest challenge rating that does not
exceed nCRMax. The category is a global constant
TALENT_CATEGORY_.... The nExcludedTalentsFlag
parameter is a sum of TALENT_EXCLUDE_... boolean
constants that can be used to exclude ability, item or spell
talents.
talent GetCreatureTalentRandom(

int nCategory,
object oCreature = OBJECT_SELF,
int nExcludedTalentsFlag = 0)

This call will return a random talent belonging to the
creature oCreature in the category nCategory, which is a
global constant TALENT_CATEGORY_.... The parameter
nExcludedTalentsFlag is a sum of
TALENT_EXCLUDE_... boolean constants that can be
used to exclude ability, item or spell talents.
int GetIdFromTalent(talent tTalent)

If tTalent is a valid talent, this will return a constant
identifier. Depending on the talent type, this could be a
FEAT_..., SKILL_... or SPELL_... The type can be obtained
using GetTypeFromTalent.
int GetIsTalentValid(talent tTalen)

This returns true if tTalent is a valid talent.

80

Talents

int GetTypeFromTalent(talent tTalent)
This call returns a type TALENT_TYPE_... constant for

the talent tTalent.
int Talent(talent tTalent)

For a valid talent tTalent, this will return a constant of the
form TALENT_TYPE_..., which identifies the talent as a
feat, skill or spell.
talent TalentFeat(int nFeat)

This creates a feat talent instance with a type nFeat
matching the global constant FEAT_....
talent TalentSkill(int nSkill)

This creates a skill talent instance with a type nSkill
matching the global constant SKILL_....
talent TalentSpell(int nSpell)

This creates a spell talent instance with a type nSpell
matching the global constant SPELL_....

Feats

In the following calls, the feat identifiers correspond to the
FEAT_... global constants, which match the row numbers in
the feat.2da file. See also TalentFeat, ActionUseFeat,
GetHasFeatEffect and ItemPropertyBonusFeat.
int FeatAdd(

object oCreature,
int nFeatID,
int bCheckRequirements,
int bFeedback = FALSE,
int bNotice = FALSE)

This call can add the feat nFeatID to the creature
oCreature, then return true if the feat was successfully
added. If bCheckRequirements is true, the creature must
satisfy the requirements before the feat can be added. If
bFeedback is true, feedback will be printed in the owning
layer's chat window. If bNotice is true, a notice message
will be printed on the player's screen.
void FeatRemove(

object oCreature,
int nFeatID)

This routine strips the feat nFeatID from the creature
oCreature.

int GetHasFeat(
int nFeat,
object oCreature = OBJECT_SELF,
int nIgnoreUses = FALSE)

This returns true if the creature oCreature has the feat
nFeat, and the feat has uses remaining. The feat parameter
is a FEAT_... constant. If nIgnoreUses is true, the routine
ignores whether the creature has any feat uses remaining.
int GetMetaMagicFeat()

If the last spell cast by the caller had a metamagic type,
this routine will return it's value as a METAMAGIC_...
constant. A value of METAMAGIC_NONE indicates no
metamagic type was used.
int GetSpellFeatId()

If a spell ability is being used that is provided by a feat,
this script will return the feat identifier, FEAT_.... This is
intended for use in a spell script.

Use Limited Feats
void DecrementRemainingFeatUses(

object oCreature,
int nFeat)

For a feat nFeat that has a number of uses per day, this
routine will decrement the total available to the creature
oCreature by one. The nFeat parameter is a global constant
FEAT_... that has a number of uses per day. For example,
FEAT_EXTRA_RAGE.
void IncrementRemainingFeatUses(

object nCreature
int nFeat)

This allows the creature nCreature to use the nFeat feat
one additional time during the day. The nFeat is a global
constant FEAT_....
void ResetFeatUses(

object oCreature,
int nFeatID,
int bResetDailyUse,
int bResetLastUseTime)

If the feat nFeatID has a number of uses per day, this call
can reset the number of uses available to the creature
nFeatID. If the feat nFeatID has a cool down time, this call
will reset the last use time. The nFeatID is a global constant
FEAT_..., or use FEAT_INVALID to reset all. The

81

Talents

nResetDailyUse and bResetLastUseTime parameters are not
documented, but may be used with the FEAT_INVALID
option to reset feat categories.

Skills

See also ActionUseSkill.
int GetHasSkill(

int nSkill,
object oCreature = OBJECT_SELF)

This will return true only if the creature oCreature has the
skill nSkill and the skill is usable. The skill is a SKILL_...
constant.
int GetIsSkillSuccessful(

object oTarget,
int nSkill,
int nDifficulty)

Return true if the result of a 1d20 roll plus the nSkill rank
of creature oTarget is at or above the nDifficulty score. The
skill nSkill is a SKILL_... constant.
int GetSkillRank(

int nSkill,
object oTarget = OBJECT_SELF,
int bBaseOnly = FALSE)

This returns the number of skill ranks the object oTarget
has in the skill nSkill, which is a SKILL_... constant. If
bBaseOnly is true, this returns the base skill ranks without
modifiers. If the target is untrained, this call will return 0. If
the target doesn't have the skill, this returns -1.

Spells

See also ActionCastSpell..., ActionCastFakeSpell...,
ActionCounterSpell, TalentSpell, SetEffectSpellId,
GetAreaOfEffectSpellId, GetHasAnySpellEffect and
GetSpellResistance.
void DecrementRemainingSpellUses(

object oCreature,
int nSpell)

If the creature oCreature has a number of uses per day of a
spell nSpell, then this will decrement the total by one. The
spell identifier is a SPELL_... global constant.

int GetArcaneSpellFailure(
object oCreature)

This routine returns the arcane spell failure percentage for
the creature oCreature.
int GetCasterLevel(object oCreature)

This routine returns the caster level for the last spell or
spell-like ability cast by the creature oCreature. If the
creature has not cast a spell, this returns zero.
int GetDefensiveCastingMode(

object oCreature)
This call fetches the defensive casting mode of the

creature oCreature. This is a global constant of the form
DEFENSIVE_CASTING_MODE_..., which at present only
returns true when the mode is activated or false when
disabled.
object GetAttemptedSpellTarget()

This returns the creature last targeted by a spell cast by the
object that is calling the routine. The result will change each
time a spell is cast, and is cleared when combat ends.
int GetHasSpell(

int nSpell,
object oCreature = OBJECT_SELF)

This returns the number of instances of the spell nSpell
that the creature oCreature has prepared. The nSpell
parameter is a constant of type SPELL_....
int GetHasSpellEffect(

int nSpell,
object oObject = OBJECT_SELF)

This returns true only if the object oObject has any active
effects that were applied by the spell nSpell, a constant of
type SPELL_....
int GetSpellFeatId()

When this is run from a spell script, if the spell is being
cast as a feat ability, this will return the feat identifier as a
FEAT_... constant.
int GetSpellId()

When this is run from a spell script, this will return the
spell identifier as a SPELL_... constant.
int GetSpellLevel()

When this is run from a spell script, this will return the
spell level (rather than the caster level) of the spell being
cast.

82

Talents

int GetSpellSaveDC()
When called from the spell script of a creature or an area

of effect object, this will return the difficulty class to save
against the spell.
location GetSpellTargetLocation()

This returns the location of the last spell cast by the caller.
object GetSpellTargetObject()

This will return the object that was the target of the last
spell cast by the caller.
void RefreshSpellEffectDurations(

object oTarget,
int nSpellId,
float fDuration)

This call will reset the duration of all effects on the target
oTarget that originated with spell nSpellID to fDuration
seconds. The spell identifier nSpellId is a SPELL_...
constant.
int ResistSpell(

object oCaster,
object oTarget)

This routine will perform a spell resistance check by
oTarget against a spell cast by oCaster and return true if the
spell was resisted. Spell resistance functions like an armor
class against spell attacks, and the actual spell level is not a
consideration.. The return value includes information about
how the spell was resisted. See the call notes for more
details.
void SpawnSpellProjectile(

object oSource,
object oTarget,
location locSource,
location locTarget,
int nSpellID,
int nProjectilePath)

This creates the visual effect for a spell projectile. The
source of the projectile oSource is at the location locSource.
The target of the projectile oTarget is at location locTarget.
The nSpellID is a SPELL_... constant that specifies the spell
type. The nProjectilePathType is a global constant of the
form PROJECTILE_PATH_TYPE_... that determines the
path type of the projectile.

Time
void DayToNight(

object oPlayer
float fTransitionTime = 0.0f)

In an area that is not using the day/night cycle, this call
transforms the sky's appearance to night for the player
oPlayer. According to the call notes, the fTransitionTime
parameter is not currently used.
int GetCalendarDay

This returns the current in-game day of the month.
int GetCalendarMonth()

This returns the current in-game month of the year.
int GetCalendarYear

This returns the current in-game year number.
int GetIsDawn()

Return true if the in-game clock is in the dawn time range.
int GetIsDay()

Return true if the in-game clock is in the daytime range.
int GetIsDusk()

Return true if the in-game clock is in the dusk time range.
int GetIsNight()

Return true if the in-game clock is in the night time range.
int GetTimeHour()

Returns the current game hour. This is an integer value
ranging from 0 through 23, inclusive. Each game hour lasts
a number of game minutes equal to the 'Minutes To Game
Hour' property of the module; by default this is set to 2. The
hour labels can be found in 'time.2da'.
int GetTimeMillisecond()

Returns the current game millisecond.
int GetTimeMinute()

Returns the current game minute. A game minute is equal
to a real-world minute, but the number of minutes in an
hour is determined by the 'Minutes To Game Hour' property
of the module. At the default value of 2 minutes per game
hour, this routine will return an integer value of 0 or 1.
int GetTimeSecond()

Returns the current game second. A game second is equal
to a real-world minute, and there are sixty game seconds in
a game minute.

83

Time

float HoursToSeconds(int nHours)
This uses the 'Minutes To Game Hour' property of the

module to convert nHours to a number of seconds. If the
default value of 2 minutes to the game hour is set, the result
will be nHours × 2 × 60 seconds.
void NightToDay(

object oPlayer,
float fTransitionTime = 0.0f)

In an area that does not use the day/night cycle, this
changes the current day/night cycle to daylight for the
player oPlayer. The fTransitionTime is non-functional.
float RoundsToSeconds(

int nRounds)
This routine converts nRounds into a number of seconds,

where a round is 6 seconds in length.
void SetCalendar(

int nYear,
int nMonth,
int nDay)

Add nYear years, nMonth months and nDay days to the
current date. Valid values are 0<= nYear <= 32000, 0 <=
nMonth <= 12 and 0 <= nDay <= 28.
void SetTime(

int nHour,
int nMinute,
int nSecond,
int nMillisecond)

This routine will change the in-game time to the settings
passed as arguments. According to the documentation, valid
values are as follows:

• nHour ‒ From 0 to 23 hours

• nMinute ‒ From 0 to 59 minutes

• nSecond ‒ From 0 to 59 seconds

• nMillisecond ‒ From 0 to 999 milliseconds

Values larger than these range will be set to modulus the
time range, with the excess being pushed to the next field.

Note that if the module is configured to use the default
value of 2 'Minutes per Game Hour', a value of nMinute
greater than two will be halved then added to the number of
hours. Thus, a SetTime of 5 hours and 45 minutes will be
converted to:

hours = (nHour + int(nMinute/2)) % 24 = 27 % 24 = 3

minutes = nMinute % 2 = 1

Hence, to set the time to three quarters of an hour past five
a.m., nMinute should be set to int(minutes / 30) % 2
= 1 and nSecond to 30 2 × (minutes % 30) = 30,
where minutes is 45.
float TurnsToSeconds(

int nTurns)
This routine will convert a number of nTurns turns to a

number of seconds, with a single turn equal to 60 seconds.

84

Variables

Variables

Variables can be stored on objects within the game for
persistence between game sessions. Each variable has a
name string, which is limited to 32 characters.
int Random(int nMaxInteger)

This generates a random integer in the range from 0 to
nMaxInteger-1 inclusive.

Strings

The following calls are used for string manipulation.
int CharToASCII(string sString)

This will take the first character of the string sString and
convert it to the numerical ASCII value.
int FindSubString(

string sString,
string sSubString)

If the string sSubString exists within the string sString, this
call will return the position of the first matching character.
(The first character is at position zero.) If there is no match
found, the call will return -1.
string GetStringLeft(

string sString,
int nCount)

This returns a string containing the left most nCount
characters from the string sString.
int GetStringLength(string sString)

This returns the number of characters in the string sString.
string GetStringLowerCase(

string sString)
This call returns a string containing a lower case version

of the string sString.
string GetStringRight(

string sString,
int nCount)

This returns a string containing the right-most nCount
characters from the string sString.
string GetStringUpperCase(

string sString)
This call returns a string containing a upper case version

of the string sString.

string GetSubString(
string sString,
int nStart,
int nCount)

This routine will return a string containing nCount
characters from sString, beginning with the nStart character.
The first character in sString is at position 0.
string InsertString(

string sDestination,
string sInsert,
int nPosition)

This will return a string containing a copy of sDestination
with the string sInsert at the character position nPosition.
The first character in sDestination is at position 0. If sInsert
is past the end of sDestination, this will return sDestination.
int StringCompare(

string sString1,
string sString2,
int bCaseInsensitive = FALSE)

If strings sString1 and sString2 are identical, this returns 0.
Otherwise, this function will perform an ASCII sort order
comparison, returning a negative value if string1 is before
string2, and a positive value otherwise. Thus, if you want to
check for an exact match, compare the result against zero:
 if (StringCompare(str1, str2) == 0)
If nCaseInsensitive is true, the case of the string characters
is ignored while performing the comparison.
int TestStringAgainstPattern(

string sPattern,
string sStringToTest)

The notes for this call state that it returns true if the string
sStringToTest matches the pattern sPattern. It doesn't
appear to use regular expression pattern matching or match
simple sub-strings.

Storage

The following function descriptions represent multiple
function calls that are used for variable storage and
recovery. The notation {Type} indicates a variable type,
which can be Float, Int, Location, Object or String. The
valid types are listed for each function description. For
campaign variables, see the Campaign section.

85

Variables

void DeleteLocal{Type}(
object oObject,
string sVarName)

This call is available for variables of type Float, Int,
Location, Object and String. If the local variable of the
same type with the name sVarName has been assigned to
the object oObject, this call will remove it. Thus,
DeleteLocalInt will delete a local integer.
{type} GetGlobal{Type}(

string sVarName)
This call is available for variables of type Bool, Float, Int,

and String. The call will return the value of the global
variable with the name sVarName. Thus, GetGlobalBool
will return a boolean value.
{type} GetLocal{Type}(

object oObject
string sVarName)

This call is available for variables of type Float, Int,
Location, Object and String. The call will return the value
of the local variable with the name sVarName that is
assigned to the object oObject. Thus, GetLocalString will
return a string value.
string GetVariableName(

object oTarget,
int nPosition)

Local variables are assigned to an object sequentially. This
call will return the name of the variable at position
nPosition on the object oTarget. If the position is invalid,
this will return an empty string.
int GetVariableType(

object oTarget,
int nPosition)

This call will return the type of the variable at position
nPosition on the object oTarget. The result is a global
constant VARIABLE_TYPE_..., or -1 if the position is
invalid.
void SetGlobal{Type}(

string sVarName,
{type} tValue)

This call is available for variables of type Bool, Float, Int
and String. The call will set the global variable sVarName
of type {type} to the value tValue. Thus, SetGlobalInt will

set an integer value.
void SetLocal{Type}(

object oObject
string sVarName,
{type} tValue)

This call is available for variables of type Float, Int,
Location, Object and String. The call will set the object's
oObject variable with the name sVarName to the value
tValue. Thus, SetLocalLocation will set a location value.

Type Conversion

The following routines can be useful for various purposes,
such as converting numbers to strings for presentation in the
chat window.
int FloatToInt(float fFloat)

This function will convert the floating point value fFloat
to the nearest integer value.
string FloatToString(

float fFloat,
int nWidth = 18,
int nDecimals = 9)

This call will return a string representation of the floating
point fFloat. The string is nWidth characters wide and has
nDecimals.
float IntToFloat(int nInteger)

This function will convert the integer nInteger to a nearby
floating point value.
string IntToHexString(int nInteger)

This will convert the integer nInteger to a hexadecimal
string, beginning with '0x' and followed by eight hex digits.
See also the HexStringToInt function in ginc_math.
object IntToObject(int nInteger)

This call converts the integer value nInteger to an object.
However, the object may be invalid.
string IntToString(int nInteger)

This will return a string representation of the integer
nInteger.
int ObjectToInt(object oObject)

This call takes an object oObject and returns an integer
value.

86

Variables

string ObjectToString(object oObject)
This will convert the object oObject to a hexadecimal

string. See StringToObject.
float StringToFloat(string sNumber)

This call converts a string representation of a value to a
floating point number.
int StringToInt(string sNumber)

This will convert the string sNumber to an integer.
object StringToObject(string sString)

The string sString is converted to an object. However, the
object may be invalid. See ObjectToString.

87

Arrays.

Arrays.
The two-dimensional arrays provide tables of information

that is accessed while the game is running. The individual
tables can be viewed by selecting “2DA File...” from the
“View” menu. The identifiers in some of the tables
correspond to sets of global constants. Scripts can retrieve
values from these files by means of the Get2DAString
routine. The Data\2DA folder under the install directory
contains some text files that describe the corresponding
2DA file format.

Some of the columns in the 2da files contain reference
numbers to entries on the dialog.tlk file under the game's
install directory. To view these entries, you can use a tool
such as 'tlkedit', which is available for download from the
internet.

Here are some of the 2da files available:

ambientsound – the ambient sound tracks. These
correspond to the Ambient Sound menu items in the area
properties. Thus, “Barrow Ambience” is
al_mg_spiritbarrow_01 (= #201073).
armorrulestats – the game statistics for the armor and
shield types. These are set via the Armor type field under
Behavior.
backgrounds – the various backgrounds that can be
selected during the character creation process. The values
are passed as a parameter to the gc_background script. The
identifiers match the BACKGROUND_... global constants.
baseitems – A table of base item types and associated
parameters. The identifiers match the BASE_ITEM_...
global constants.
cls_... – These are tables of data that are referenced by the
class.2da file.
classes – This includes all of the classes used in the game.
See the classes.txt file on the 2DA folder for more details.
crafting – This table gives crafting recipes for producing
various items. For example, row 47 is the recipe for item tag
NW_IT_MBRACER002, which is the Bracers of Armor +1.
The required items are gem_03, n2_crft_ingiron and
n2_crft_ingiron. These tags correspond to an Obsidian gem

and two Iron Ingots.
creaturespeed – The movement types and rates set with the
'Walk Rate' properties field.
des_crft_spells – This file is used to determine which of the
spells are allowed to be cast on a 'Blank Scroll', 'Magical
Potion Bottle' or 'Magic Wand' item to create a new magic
item. The magic missile spell, for example, can not be used
to create a potion.
des_restsystem – This file is used for the wandering
monster system.
disease – Parameter definitions for the available disease
types, per the DISEASE_... constants. See EffectDisease.
domains – This array lists the available cleric domains and
the spell powers provided at each spell level. The domains
are selected by the Class Ability creature feats. The spells
correspond to the SPELL_... constants and the rows in
spells.2da. The following domains are included in this table
but are not listed in the game manual: chaos, darkness,
dream, fury, law, luck, time and undeath.
effecticons – The effect types that have icons defined by the
EFFECT_TYPE_... constants. These are used to display
active effects next to the characters in the party bar. See
EffectEffectIcon.
feat – This long table defines the various feats available to
party members and creatures. The Constant column
corresponds to the FEAT_... constants. Other columns
determine the prerequisites, whether the feat can be taken
multiple times, and whether the feat is active and persistent.
iprp... – Various item property tables, including cost tables.
itemprops – the available item property types available for
each item type. See the far right column for the item
properties.
loadscreens – the load screens available during the
transition to an area. The identifiers match the
AREA_TRANSITON_... global constants.
nwn2_colors – the valid text color identifiers. These labels
can be used to change the display color of a text string.
nwn2_deities – These are the various deities used in the

88

Arrays.

game. The columns include the subraces (when AllRaces is
0), alignments, classes and genders that follow the deity.
The subraces are defined in the racialsubtypes.2da file.
Favored weapons are defined in the far right column.
placeables – This table lists data for the various placeables.
Click on the NWN2_ModelName column to sort by tag.
polymorph – the available polymorph effects, as used in
the ga_effect_polymorph script.
prioritygroups – the ranking of the sound priorities.
racialsubtypes – This lists the various racial subtypes as
well as the monster types. It includes the ability
adjustments, favored class, race-specific feat (per the
RACE_... constants) and the matching RACIAL_...
constants.
ranges – a list of ranges used with the creature 'Perception
Range' setting.
reputation – this table is used to determine the reputation
shift with the ga_reputation script.
spells – a long table of the spells and associated data.
Among the columns are the spell levels for various classes,
school, range, the visual and auditory effects, and spell
immunities.
traps – contains values for detecting and disarming the
various trap types.
visualeffects – the available visual effect identifiers, labels
and parameters. The identifiers corresponds to the VFX_...
global constants. See the visualeffects.txt file
• Label – The tag that corresponds to the global

constant used in the ApplyEffect commands.
• Type_FD – D: duration effect/persistent; F: fire and

forget effects that don't use duration; B: beam effects
that can't be used like fire-and-forget

• ..._HeadCon_Node – the '.sef' files played at the
source.

• ..._Impact_Node – the '.sef' files played at the impact.
• Shake... – used when screen shaking is associated

with the effect.

89

Action Scripts.

Action Scripts.
The following scripts can be run as actions within a

conversation. They are available from the conversation
action tab's script menu when a new action is added. Each
script name may be followed by one or more parameters.
The script's action is described immediately after.
ga_align_good-evil

int nActType
int nAlignmentShiftRule

This script modifies the alignment of the speaker along the
good-evil axis. The nActType parameter determines how
much the act affects the alignment on a scale of -3
(fiendish) to +3 (saintly). The nAlignmentShiftRule
determines how the shift is applied to the current alignment
rating.

For nAlignmentShiftRule = 0, apply the shift normally. For
a value of 1, a good act shifts toward good to a maximum
alignment of 50; an evil act shifts toward evil to a maximum
alignment of 50. This prevents the shift from moving the
creature's alignment to the opposite end of the axis by a
single act. Passing a 2 causes the shift to move toward
neutral regardless of whether it was good or evil.
ga_align_law-chaos

int nActType
int nAlignmentShiftRule

This script functions like the ga_align_good-evil script,
except that it modifies the alignment of the speaker along
the law-chaos axis.
ga_alignment

int nActType
int bLawChaosAxis

This script changes the alignment of the player. The shift
is determined by the value of nActType, which has the same
range of values as for the ga_align_good-evil script. If
bLawChaosAxis is true, the alignment shift is along the law-
chaos axis. Otherwise the change is along the good-evil
axis.
ga_area_transition

string sDestination
int bIsPartyTransition

This script causes a transition of the speaker to the area

identified by bIsPartyTransition. If bIsPartyTransition is
true, cause the associated party to transition as well.
ga_attack

string sAttacker
int bMaintainFaction

This causes the creature identified by sAttacker to initiate
an attack against the speaker. If bMaintainFaction is false,
change the faction of the attacker to Hostile. This should be
placed on an [END DIALOG] entry.
ga_attack_target

string sAttacker
string sTarget
int bMaintainFaction

The script will trigger an attack identified by sAttacker on
sTarget. If bMaintainFaction is false, sAttacker will change
to the Hostile faction.
ga_bark_trigger_reset

Reset the last bark trigger.
ga_blackout

This causes the screen to instantly fade to black.
ga_camera_facing_point_party

string sTarget
float fDistance
float fPitch
int nTransitionType

This script will turn the party cameras to face the target
object identified by sTarget. The fDistance is the camera
distance in meters. This is usually from 1 to 25, with 5
being optimal. An fDistance of 0 will use the current
camera distance setting. The fPitch is an angle from 1
(overhead) to 89 (ground). A reasonable value is 60-70, and
a value of 0 uses the current value. The nTransitionType
sets the transition rate to between 1 and 100, with 0 being
instantaneous.

90

Action Scripts.

ga_cast_fake_spell_at_object
float fSecondsDelay
string sCaster
int nSpell
string sSpellTarget
int nProjectilePathType

This script causes the caster sCaster to execute the
motions used to cast a spell at sSpellTarget, but without the
actual spell effects. The fSecondsDelay gives the number of
seconds before casting starts. The spell type, nSpell, is
given by one of the SPELL_... global constants. If
sSpellTarget is an empty string, the effect is targeted at the
PC. The nProjectilePathType parameter is set to one of the
PROJECTILE_PATH_TYPE_... global constants, or to
PROJECTILE_PATH_TYPE_DEFAULT if the value is
zero.
ga_cast_spell_at_object

float fSecondsDelay
string sCaster
int nSpell
string sSpellTarget
int nMetaMagic
int bCheat
int nDomainLevel
int nProjectilePath
int bInstantSpell

This causes the target sCaster to cast a real spell at the
target sSpellTarget. Most of the parameters are identical to
those used with the ga_cast_fake_spell_at_target script.

The nMetaMagic parameter is set to a METAMAGIC_...
global constant value. Use -1 for METAMAGIC_ANY or 0
for METAMAGIC_NONE. If bCheat is true, then the caster
does not necessarily need to be able to cast the spell. The
nDomainLevel parameter defines the caster level. If
bInstantSpell is true, cast the spell immediately.
ga_clear_actions

string sTarget
int bClearCombatState

This script removes any actions from the sTarget
creature's queue. If bClearCombatState is true, it will also
stop combat.
ga_clear_comp

Remove any roster members from the speaker's party. The

removed members are not despawned.
ga_clock_off

int bAllPlayers
Turn off the clock for the PC speaker. If bAllPlayers is

true, turn off the clock for everybody. This will allow a pre-
combat discussion without expiring running spells.
ga_clock_on

int bAllPlayers
As ga_clock_off, but turn the clock on.

ga_commandable
string sTarget
int bCommandable

Set the commandable state for the creature identified by
sTarget. If bCommandable is true, make the creature
commandable; otherwise creature is non-commandable.
ga_compshift

Currently this does nothing.
ga_conversation_self

string sConversation
This starts a conversation sConversation with yourself;

without another creature being involved. Possibly useful for
narrative.
ga_create_object

string sObjectType
string sTemplate
string sLocationTag
int bUseAppearAnimation
string sNewTag
float fDelay

This script calls ActionCreateObject using the parameters.
The sObjectType is a single character string indicating the
object type: C=creature; P=placeable; I=item; W=waypoint;
S=store; V=visual effect and L=light. The sLocationTag is
the tag of a waypoint where the object will be created. This
defaults to OBJECT_SELF.
ga_cutscene_move

string sWPTag
int nMilliseconds
int bRun
int string sMoverTag

This will delay the conversation for nMilliseconds/1000
seconds, and move the creature identified by sMoverTag to
sWPTag.

91

Action Scripts.

ga_date_advance
int nYear
int nMonth,
int nDay

Cause the date to advance by nYear = [0,32000] years,
nMonth = [0,12] months and nDay = [0,28] days.
ga_date_set

int nYear
int nMonth
int nDay

This sets the game calendar to a new date. Valid values are
the year nYear between 1340 and 32001, the month nMonth
between 1 and 12, and the day nDay between 1 and 28.
Each year has 12 months and each month has 28 days.
ga_death

string sTag
int nInstance

Make nInstance's of objects with tag sTag appear dead.
Multiple, comma-separated tags can be passed in sTag.
ga_description_append

string sTarget
string sText
int nStrRef

This script will append the string sText to the end of the
target sTarget's description, with no space. If sTarget is
empty, the target is the PC speaker. If nStrRef is not zero,
this script will then append the talk table string with
reference nStrRef to the end of the description. (See
GetStringByStrRef.)
ga_description_prepend

int nStrRef
string sText
string sTarget

If nStrRef is not zero, this script will then insert the talk
table string with reference nStrRef at the beginning of target
sTarget's description. (See GetStringByStrRef.) If sTarget is
empty, the target is the PC speaker. The string sText will be
inserted between the table string and the description,
without spaces.

ga_description_set
string sTarget
string sText
int nStrRef

This script will set the target sTarget's description to the
string sText, with no space. If sTarget is empty, the target is
the PC speaker. If nStrRef is not zero, this script will then
append the talk table string with reference nStrRef to the
end of the description. (See GetStringByStrRef.)
ga_destroy

string sTagString
int iInstance
float fDelay

This script will destroy the instance iInstance of the object
with the tag sTagString. If iInstance is -1, all instances will
be destroyed. The sTagString can include a comma-
separated list (with no spaces) to destroy multiple objects
with matching tags. The fDelay sets the time before the
objects are destroyed.
ga_destroy_item

string sTagString
int nQuantity
int bPCFaction

This script will remove nQuantity items matching
sTagString from the PC's inventory. If bPCFaction is true,
the items are removed from all members of the PC faction.
ga_destroy_party_henchmen

Destroy all henchmen belonging to the party.
ga_disable_scripts

string sTarget
Save and clear the event handlers for the target sTarget.

See ga_enable_scripts.
ga_donothing

This does nothing except print a debug message.
ga_door_close

string sTag
int nLock

Close the door with the tag sTag. If nLock is true, lock the
door after it is closed.
ga_door_open

string sTag
Unlock and open the door identified by sTag.

92

Action Scripts.

ga_effect
string sEffect
string sParams
string sDuration
int iVisualEffect
string sTarget

Execute an effect on target sTarget. The effect sEffect can
be one of the following strings: “AbilityIncrease”,
“AbilityDecrease”, “Blindness”, “Damage”, “Death”,
“Disease”, “Heal”, “Paralyze”, “Poison”, “Raise” or
“Visual”. The sParams string provides the appropriate
parameters for selected effects, as follows:

• AbilityIncrease or AbilityDecrease: ability_type,
modify_by; The ability_type is Str=0, Dex=1,
Con=2,Int=3, Wis=4, Cha=5. The modify_by is an
integer amount by which to modify the ability.

• Damage: amount, type, power. The type is one of the
DAMAGE_TYPE_... constant values; the power is
one of the DAMAGE_POWER_... constant values.

• Disease: type. The type is one of the DISEASE_...
constant values.

• Poison: type. The type is one of the POISON_...
constant values.

The remaining effects do not require parameters. The
duration string is either “I” for instant, “P” for permanent or
“T,{duration}”. The last consists of a f-value constant. (For
example: “T,10.0f”.) The iFVisualEffect is -1 for no visual,
0 for a standard visual or select a value from the
visualeffects.2da file.

See the script comments for examples.
ga_effect_polymorph

string sTarget
int nPolymorphSelection
int nLocked
string sDurationType
float fTemporaryDuration

Perform a polymorph effect on the target sTarget, which
defaults to the speaker. The nPolymorphSelection is
selected from the polymorph.2da table. If nLocked is 1, the
player is unable to cancel the polymorph. The
sDurationType is the duration type: “I”=instant,
“P”=permanent and “T”=temporary. The last is set to the

floating point duration specified by fTemporaryDuration.
ga_enable_scripts

string sTarget
Restore the saved event handlers for target sTarget. See

ga_disable_scripts.
ga_end_game

string sEndMovie
End the current game, play the movie sEndMovie and then

return all players to the main menu.
ga_equip_slot

string sTarget
int nSlot
string sItemTag

Equip the sSlot inventory slot of creature sTarget with the
item identified by tag sItemTag. The sSlot is one of the
INVENTORY_SLOT_... global constants. These
correspond to the equipment slots in the edit inventory
dialog for a creature blueprint.
ga_explore_current_area

int bWholeParty
This script reveals the map for the speaker, or, if

bWholeParty is true, for the entire party. It exposes the
entire map of the PC's current area.
ga_face_target

string sFacer
string sTarget
int bLockOrientation

This script causes the creature sFacer to orient themselves
toward the target sTarget. If bLockOrientation is true, the
facing will remain in effect for the rest of the conversation.
ga_faction_join

string sTarget
string sTargetFaction

The target sTarget is made to join faction sTargetFaction.
This can either identify a member of the faction, or be one
of the standard factions: $COMMONER, $DEFENDER,
$HOSTILE or $MERCHANT.
ga_faction_rep

string sTarget,
string sTargetFaction
string sChange

This script adjusts the attitude of the faction
sTargetFaction toward the target sTarget by the amount

93

Action Scripts.

sChange. The target faction can be one of the standard
factions: $COMMONER, $DEFENDER, $HOSTILE or
$MERCHANT. Alternatively, it can be a creature that
belongs to the target faction.
ga_fade_from_black

float fSpeed
If the screen had been faded to a color using the

ga_fade_to_black script, then this causes each player's
screen to return from that color at the speed specified by
fSpeed.
ga_fade_to_black

float fSpeed
float fFailsafe
int nColor

This script will fade each player's screen to a color nColor
at the speed fSpeed. The color is an integer equivalent to the
hexadecimal values in the NWN2_Colors.2da file, with 0
for black and 1677725 for white. On a PC running Vista,
the color hexadecimal values can be converted to integers as
follows:

1. Choose the All Programs menu on the OS toolbar.
2. Launch the Calculator from the Accessories menu.
3. Select the View menu and choose Scientific.
4. Click on the Hex radio button.
5. Enter the six character hexadecimal value.
6. Click on the Dec radio button.

ga_first_name_append
string sTarget
string sText
int nStrRef

This script can be used to append sText and the string
reference nStrRef to the first name of the object sTarget. If
no sTarget is provided, the first name of the PC_SPEAKER
is modified. The script notes recommend setting sText to a
space if this is only being used to append the string
reference. See also the ga_last_name_... scripts.
ga_first_name_prepend

string sTarget
string sText
int nStrRef

This is similar to ga_first_name_append, except that the
strings are prepended to the first name. See also the
ga_last_name_... scripts.

ga_first_name_set
string sTarget
string sText
int nStrRef

This script changes the first name of the target sTarget to
the concatenation of sText and the string reference nStrRef.
If the sTarget string is empty, the first name of the PC
Speaker is set instead. See also the ga_last_name_... scripts.
ga_flag_worldmap_autosave

int bOn
This script changes the setting of the global integer

CAMPAIGN_SWITCH_WORLD_MAP_AUTO_SAVE to
the value of bOn. This variable is used in the
DoShowWorldMap routine in the ginc_worldmap include
file. If bOn is true, the DoShowWorldMap routine will
perform a single player autosave .
ga_floating_str_ref

int iStrRef
This will place a floating string above the PC speaker. The

string is referenced by iStrRef using a GetStringByStrRef
call.
ga_floating_text

string sText
This script places the floating string sText above the PC

speaker. This string will remain for the default duration of 5
seconds and can be seen by members of the same faction
within 30 meters.
ga_force_exit

string sCreatureTag
string sWPTag
int bRun

The creature identified by tag sCreatureTag will walk to
the location of waypoint sWPTag then self-destruct by
fading away. If bRun is true, the creature will run instead of
walking.
ga_force_rest

int bAllPartyMembers
The PC speaker is provided the benefits of a rest,

including restoring hit points, recovering spells, resetting
limited use feats, and so forth. If bAllPartyMembers is true,
then the entire party is provided the same benefits.

94

Action Scripts.

ga_gint_max
string sVariable
string sChange
int iMax
int iRule

This script will set the value of the global integer variable
sVariable. The sChange parameter can be a new value or it
can perform an operation on the existing value. (See
ga_global_int for details.) The iMax parameter specifies a
maximum value for the variable, so if, for example,
sChange causes an incremental increase, the value of iMax
can be used to provide a cap to the value.

The parameter iRule determines the action taken when
both the original value and modified value of sVariable
exceed iMax:

iRule Result

0 Ignore iMax and just apply the sChange.
1 Set the variable to iMax.
2 Use the lower of the original or final value for

sVariable.

ga_gint_min
string sVariable
string sChange
int iMin
int iRule

This script will set the value of the global integer variable
sVariable. The sChange parameter can be a new value or it
can perform an operation on the existing value. (See
ga_global_int for details.) The iMin parameter specifies a
minimum value for the variable, so if, for example,
sChange causes an incremental decrease, the value of iMax
can be used to provide a cap to the value.

The parameter iRule determines the action taken when
both the original value and modified value of sVariable
exceed iMin:

iRule Result

0 Ignore iMin and just apply the sChange.
1 Set the variable to iMin.
2 Use the greater of the original and final value for

sVariable.

ga_give_feat
string sTarget
int nFeat
int bCheckReq
int bAllPartyMembers

Use this script to award the target creature sTarget the feat
nFeat, which is equal to one of the FEAT_... constants (or
see the row numbers in the feat.2da file). If bCheckReq is
true, the feat is only awarded if the target meets the
requirements. If bAllPartyMembers is true, then the feat is
awarded to each member of the party. See also
ga_remove_feat.
ga_give_gold

int nGP
int bAllPartyMembers

The PC speaker is given nGP gold pieces. If
bAllPartyMembers is true, each member of the party is
awarded nGP gold pieces.
ga_give_inventory

string sSource
string sTarget
int iInventory

This script is used to transfer inventory from the creature
sSource to sTarget en masse. The sSource parameter
defaults to the conversation owner while sTarget defaults to
the PC. If iInventory is 0, all of sSource's possessions and
gold are given to sTarget. When iInventory is 1, only the
non-equipped inventory is transferred, while for iInventory
set to 2 only the equipped inventory is given.
ga_give_item

string sTemplate
int nQuantity
int bAllPartyMembers

This script will provide the PC speaker with nQuantity
items that have the Template ResRef string sTemplate. If
the nQuantity is less than 1, it is set to 1. If the
bAllPartyMembers parameter is true, then all members of
the party will receive the same items.
ga_give_item_global_int

string sItemRR
string sGlobalNum
int bAllPartyMembers

This script will provide the PC will one or more copies of

95

Action Scripts.

the item specified by the resource reference sItemRR. The
number of copies is determined by the value of the global
integer with the name passed in the sGlobalNum argument.
If bAllPartyMembers is true, then all party members receive
the same number of the items.
ga_give_partial_quest_xp

string sQuestTag
int nPercentXP

This script will award all members of the party a
percentage of the experience point award that is specified
for the quest with the tag sQuestTag. Both the tag and the
XP award should be listed in the module or campaign
journal as a category. The value of nPercentXp is a
percentage value between 0 and 100. If it is above 100, the
value is limited to 100. The notes for this script suggest this
for use with a quest that can be completed in several stages,
providing a partial award at the end of each stage. See also
ga_give_quest_xp.
ga_give_quest_xp

string sQuestTag
Each member of the party will be awarded the experience

for completion of the quest with the tag sQuestTag. The tag
must be listed in the module or campaign journal as a
category. See also ga_give_partial_quest_xp.
ga_give_xp

int nXP
int bAllPartyMembers

This script will award the PC with nXP experience points.
If bAllPartyMembers is true, all members of the party will
receive the experience points.
ga_global_float

string sFloatName
string sChange

This script modifies the value of the float global variable
sFloatName. The sChange parameter can be a new value or
it can perform an operation on the existing value. For
example:

“3.2” Set the value to 3.2f.
“++” Add 1.0f to the current value.
“--” Subtract 1.0f from the current value

“=-1.5” Set the value to -1.5f.
“-10.1” Subtract 10.1 from the value.

“-” Subtract 1.0f from the value.
ga_global_int

string sIntName
string sChange

This script modifies the value of the integer global
variable sIntName. The sChange parameter can be a new
value or it can perform an operation on the existing value.
For example:

“3” Set the value to 3.
“--” Subtract 1 from the current value
“-4” Subtract 4 from the value.

“=-31” Set the value to -31.
ga_global_string

string sStringName
string sChange

This script modifies the contents of the string global
variable sStringName to sChange.
ga_group_formation_bma

string sGroupTarget
float fSpacing
int iMoveType

This will cause the group containing member
sGroupTarget to be placed into a staggered marching
formation called “BenMa”. Each member is separated by
fSpacing from his neighbor. The iMoveType is a constant
that defines how the members of the group will move to
their destination. The valid constants are of type MOVE_...
as defined in the ginc_group include file. The latter has a
number of routines for creating groups and running various
commands on the collective membership.
ga_heal_pc

int nHealPercent
int bAllPartyMembers

The PC is healed by an amount nHealPercent percent of
his total hit points. Thus if the PC has lost half his hit points
and nHealPercent is 50, the character will be fully healed.
This is accompanied by the visual effect of a cure critical

96

Action Scripts.

wounds spell. If bAllPartyMembers is true, then each party
member is healed by the same percentage. The default value
of 0 for nHealPercent will heal 100% of the damage.
ga_henchman_add

string sTarget
int bForce
string sMaster
int bOverrideBehavior

This script will attempt to add the creature sTarget to the
party as a henchman of the character sMaster. The latter
defaults to the PC speaker. If bForce is true, the creature
will be added even if it will exceed the maximum allowed
henchmen for the PC. If bOverrideBehavior is true, the
creature's scripts will be replaced by the standard associate
scripts (gb_assoc_...).
ga_henchman_remove

string sTarget
string sOptionalMasterTag

This will remove a henchman sTarget from the PC's party.
If sTarget is a companion, this will have no effect. The
sOptionalMasterTag parameter is a vestigial argument that
has no effect.
ga_henchman_replace

string sOld
string sNew
int bForce
int bOverrideBehavior
string sOptionalMasterTag

An existing henchman sOld of sOptionalMasterTag is
removed from the party and sNew is added as a new
henchman. The optional parameter sOptionalMasterTag
defaults to the master used in the ga_henchman call for
sOld, or else to the PC speaker. If bForce is true, the
creature will be added even if it will exceed the maximum
allowed henchmen for the PC. If bOverrideBehavior is true,
the creature's scripts will be replaced by the standard
associate scripts (gb_assoc_...).
ga_henchman_setmax

string sChange
This will change the maximum number of henchmen

allowed for the party. The parameter sChange is used in the
same manner as sChange for the ga_global_int script. Thus
an sChange value of “++” will increment the maximum

henchmen by one.
ga_hotspot_vis

int bVisible
string sMap
string sHotspot

This script is used in campaigns when you have built a
world map with the World Map Editor. It sets the visibility
of a hot spot on the map. The visibility state is determined
by the value of bVisible, with 0 for false and 1 for true. The
string sMap is the value of the WorldMapName in the map
properties. The sHotSpot is the value of the Name in the
map point property.
ga_hotspots_match_range_vis

int bVisible
string sMap
string sCol
int nMin
int nMax

This script will set the visibility of a group of hotspots on
a world map based on their resource reference number. The
visibility state is set by the boolean bVisible. The string
sMap is the value of the WorldMapName in the map
properties. The string sCol is the name of the column of the
map hotspots 2da file, which has the value <sMap>_hs.2da.
All hotspots that have a resource reference number at or
above nMin and less than nMax will be flagged. (This is
true even if nMin > nMax.)
ga_hotspots_match_str_vis

int bVisible
string sMap
string sCol
string sMatchValue
sMatchSpecifications

This script will set the visibility of a group of hotspots on
a world map. The visibility state is set by the boolean
bVisible. The string sMap is the value of the
WorldMapName in the map properties. The string sCol is
the name of the column of the map hotspots 2da file, which
has the value <sMap>_hs.2da. If the string sMatchValue
matches any values in the column, those hot spots will have
their visibility state modified. The sMatchSpecifications
parameter is currently unused.

97

Action Scripts.

ga_journal
string sCategoryTag
int nEntryID
int bAllPartyMembers
int bAllPlayers
int bAllowOverrideHigher

This script will add an entry from the module or campaign
to a player's in-game journal. The sCategoryTag must
matches the Tag of a category in the journal, and nEntryID
needs to match the ID of an entry within the category.

If bAllPartyMembers is true, the entry is added to the
journal of all party members. If bAllPlayers is true, the
journal entry is added to the journal of all players in the
module. If bAllowOverrideHigher is true, the journal entry
is allowed to override an existing journal entry from the
same category that has a higher ID number.

Note that if this is this journal entry is marked as an end
point, the journal entry will be placed in the completed
section of the player's journal. However, you will need to
award the experience points for quest completion using a
separate script, such as with ga_give_quest_xp.
ga_jump

string sDestination
string sTarget
float fDelay

The object sTarget will perform a direct jump to the object
or waypoint sDestination after a delay of fDelay seconds.
This jump functions like a magical teleport, skipping the
intervening terrain. By default sTarget is the conversation
owner.
ga_jump_faction

string sTagOfMember
string sTagOfWayPoint
int iFormation
string sFormationParams

This script uses the group functions defined in the
ginc_group include file. It creates a group consisting of all
members of the faction that includes sTagOfMember. The
members of the group are then placed into a staggered
marching formation called “BenMa”, which is essentially a
filled diamond formation. The group is then jumped to the
waypoint with the tag sTagOPfWayPoint.

The parameters iFormation and sFormationParams are
not used in the script and can be ignored.
ga_jump_party_in_formation

string sWaypoint
int iFormationNum
float fFormationTightness
int bDisableNoise

This script will jump the entire party to the location of the
waypoint sWaypoint. The iFormationNum is a parameter
specifying a formation type, as follows:

iFormationNum Formation

0 Filled diamond
1 Line
2 Half circle, facing out
3 Full circle, facing out
4 Rectangle

The fFormationTightness sets the spacing between the party
members, which has a default value of 1.5f. If the
bDisableNoise parameter is false, then the party members
may be randomly shifted out of a perfect formation.
ga_jump_party

string sDestTag
int bWholeParty
int bOnlyThisArea

This script will perform a jump movement of the party to
the location of an object or waypoint identified by the tag
sDestTag. If bWholeParty is false and this is a module only,
only the PC makes the transition to the destination. The
bOnlyThisArea parameter is unused and can be ignored.
ga_last_name_append

string sTarget
string sText
int nStrRef

This script can be used to append sText and the string
reference nStrRef to the last name of the object sTarget. If
no sTarget is provided, the last name of the PC_SPEAKER
is modified. The script notes recommend setting sText to a
space if this is only being used to append the string
reference. See also the ga_first_name_... scripts.

98

Action Scripts.

ga_last_name_prepend
string sTarget
string sText
int nStrRef

This is similar to ga_last_name_append, except that the
strings are prepended to the last name. See also the
ga_first_name_... scripts.
ga_last_name_set

string sTarget
string sText
int nStrRef

This script changes the last name of the target sTarget to
the concatenation of sText and the string reference nStrRef.
If the sTarget string is empty, the last name of the PC
Speaker is set instead. See also the ga_first_name_... scripts.
ga_load_mod

string sModule
string sWaypoint

This script causes the module sModule to be loaded, then
places the players at the module waypoint sWaypoint. The
sModule must be the file name of a valid module without
the '.mod' extension. If sWaypoint is not provided, the party
will be placed at the default start location for the module.
Note that this differs from the ga_start_mod script in that
the module state is preserved from the last time the PCs
visited.
ga_local_float

string sVariable
string sChange
string sTarget

This will change the value of the floating point variable
sVariable belonging to the target sTarget. If sTarget is
undefined, it defaults to the conversation owner. The
sChange parameter can be a new value or it can perform an
operation on the existing value. See ga_global_float for
examples.
ga_local_int

string sVariable
string sChange
string sTarget

This will change the value of the integer variable
sVariable belonging to the target sTarget. If sTarget is
undefined, it defaults to the conversation owner. The

sChange parameter can be a new value or it can perform an
operation on the existing value. See ga_global_int for
examples.
ga_local_string

string sVariable
string sValue
string sTarget

This will change the value of the string variable sVariable
belonging to the target sTarget to the string sValue. If
sTarget is undefined, it defaults to the conversation owner.
ga_lock

string sDoorTag
int bLock

If bLock is true, then the door sDoorTag will be set to
locked. Otherwise the door will be set to unlocked.
ga_lock_orientation

string sTarget
int bLock

If bLock is true, this script calls SetOrientOnDialog to lock
the facing of the target creature sTarget so that it won't turn
to face the current speaker during a conversation. Passing
false for bLock enables the default conversation behavior.
ga_mapnote

string sTag
int bActive

This script can be used to control the visibility of a map
note on the mini-map for an area. If bActive is true, the map
note with the tag sTag will be enabled, otherwise it will be
disabled.
ga_move

string sWP
int nRun
string sTagOverride

This will cause a creature to perform a move action and
travel to the waypoint sWP. If nRun is true, the creature will
run instead of walking. The sTagOverride is the tag of the
creature that will perform the move. If this field is blank,
then the conversation owner performs the move.

99

Action Scripts.

ga_move_exit
int nExitNumber
int nRun
string sWaypoint
string sObject

This will cause the creature sObject to move to a waypoint
with the tag sWaypoint, then exit. If sWaypoint is not
specified, the script will search for a waypoint with the tag
“nwc_exit” plus the string value of nExitNumber. Thus, if
nExitNumber is 1, the expected tag is “nwc_exit1”. If nRun
is true, the creature will run instead of walking.
ga_music_battle_play

This will cause the area's battle music to play.
ga_music_battle_restore

This script restores the area's battle music that was saved
with the ga_music_battle_save script. The combination
allows the battle music to be changed with the
ga_music_battle_set, then restored to the original setting.
ga_music_battle_save

This script saves the name of the current battle music track
to a local string variable attached to the area. It allows the
music track to be restored with ga_music_battle_restore
after it has been changed.
ga_music_battle_set

int nTrack
This script will change the area's battle music track to a

theme identified by the track number nTrack in the
ambientmusic.2da file. The notes for this script list the full
names of the tracks. See also the TRACK_BATTLE_...
global constants.
ga_music_battle_stop

This deactivates the area's battle music.
ga_music_play

This will cause the area's background music to play.
ga_music_restore

This script restores the area's background music that was
saved with the ga_music_save script. The combination
allows the background music to be changed with the
ga_music_set, then restored to the original setting.
ga_music_save

This script saves the name of the current background
music track to a local string variable attached to the area. It

allows the music track to be restored with ga_music_restore
after it has been changed.
ga_music_set

int nTrack
This script will change the area's background music track

to a theme identified by the track number nTrack in the
ambientmusic.2da file. The notes for this script list the full
names of the tracks.
ga_music_stop

This deactivates the area's background music.
ga_notice_text

string sText
int nStrRef

This script will construct a string consisting of the contents
of sText concatenated with the string reference identified by
nStrRef. It will then post the resulting string to the player's
“Notice Window GUI”. When I tested this out the string
appeared on the screen in a manner similar to a notice about
a Journal Entry.
ga_object_events_clear

string sObjectTag
This script causes the various event handler scripts for the

object sObjectTag to be stored as local variables on the
object. All script properties are then cleared on the object,
so that no events are handled. This script will only work on
objects within areas. It fails when applied to areas or the
module. See also ga_object_events_restore.
ga_object_events_restore

string sObjectTag
If ga_object_events_clear was used to clear the event

handler scripts on the object sObjectTag, this script will
restore the properties to their original value. It loads the
event handler scripts from local variables on the object.
ga_open_inventory

string sCreatureTag
This script causes the inventory panel of the creature

sCreatureTag to open for access by the player. This should
only be run at the end of a cut scene conversation, or from a
Neverwinter Nights 1-style dialogue. It could be used, for
example, when selecting a container causes a conversation
launch that determines what actions the player will take.

100

Action Scripts.

ga_open_store
string sTag
int nMarkUp
int nMarkDown

This is the standard script for opening a store from a
conversation with, say, a merchant. Typically it should be
run as the last step in a conversation, or from a Neverwinter
Nights 1-style dialogue. The store sTag must exist as a
Store object within the module, or the dialog will fail.
(Typically the store object is located with the merchant.)
The nMarkUp and nMarkDown parameters are percentages
that are used to modify the base price of an bought or sold
item, respectively. These are modified by the result of a
opposed appraise check by the current speaker, which can
be adjusted by certain spells such as charm person.
ga_party_add

string sRosterName
For a creature to be a member of the player's roster, it

must have been assigned a roster name, such as by the
ga_roster_add script. The ga_party_add script will add the
creature with the roster name sRosterName to the PC's
party. This will fail if the creature would exceed the
maximum party size, or if the creature is not available.
ga_party_face_target

string sFactionMember
string sTarget
int bLockOrientation

The members of the faction that includes sFactionMember
will turn to face the subject sTarget. This is useful, for
example, if the party is approached by an NPC because of a
SpeakTrigger, and you want the remainder of the NPC's
faction to turn and face the PC. If bLockOrientation is true,
then the faction members will remain locked facing the
same orientation for the remainder of the dialog.
ga_party_freeze

This causes all members of the PC's party to stand their
ground. It sets the NW_ASC_MODE_STAND_GROUND
variable to true, which is used in the gb_comp_heart
companion heartbeat script to tell the companion not to
follow the PC or enter combat. You would typically call this
at the start of a conversation.

ga_party_size
int nSize

This script will set the number of roster members that the
player has available with the Party Selection interface to
nSize. The default roster size is 3, not including henchmen.
ga_party_unfreeze

This will restore movement to the party after they were
frozen by a call to the ga_party_freeze script. It does not
cause the party members to continue the actions they were
performing prior to the freeze. This script would typically
be called at the end of a conversation where
ga_party_freeze was run.
ga_play_animation

string sTarget
int nAnim
float fSpeed
float fDurationSeconds
float fDelayUntilStart

The target sTarget will perform the animation with the tag
nAnim, which should be set to an ANIMATION_...
constant value. This will allow fire and forget, looping and
placeable animations. It can be useful when the
conversation node Camera Settings are configured to use a
static camera. If sTarget is not set, the animation is applied
to the conversation owner.

The speed of the animation is set by fSpeed, with 1.0
setting the speed to normal. For animations other than fire
and forget, fDurationSeconds sets the length of the
animation in seconds. (You may want to synchronize this
with the Delay setting for the conversation mode.) If
fDelayUntilStart is not zero, the target will wait this many
seconds before running the animation.
ga_play_custom_animation

string sTarget
string sAnim
int bLoop = 0
float fDelayUntilStart = 0.0f

This will cause the target sTarget to play a custom
animation per the PlayCustomAnimation function. The
sAnim string is the name of a gr2 file that will be played. If
bLoop is true, the animation will loop; otherwise it will run
once. The fDelayUntilStart parameter is the number of

101

Action Scripts.

seconds before the animation is played.
ga_play_sound

string sSound
string sTarget
float fDelay

This script makes a sound sSound play at the location of
the target sTarget. The sound parameter must be a valid
'.wav' file without the extension. (For example, you could
use the sounds from the 'Sounds' blueprints.) The sound will
run after a delay of fDelay seconds. As near as I can tell, the
sound runs at the peak volume setting.

Note that the script notes advise only using this on a
creature; it may not play if assigned to an area or the
module. It does work when played by a conversation with a
door.
ga_play_voice_chat

int nVoiceChat
string sTag

This will play the voice chat nVoiceChat from the creature
with the tag sTag. The nVoiceChat is one of the VOICE_...
global constants.
ga_reequip_all_items

string sTarget
The ga_remember_equipped script can be used to mark

equipped items as local variables on the target. If any items
were unequipped by sTarget as the result of a call to
ga_unequip_hands or ga_unequip_slot, this script will re-
equip the remembered items to their original inventory
slots.
ga_refresh_timedate_tokens

This script updates date and time tokens for use in a
conversation, based on the game world's date and time
settings.
ga_remember_equipped

string sCreature
This script will store the object in each inventory slot as a

local variable on the sCreature. The objects can then be
restored by a call to ga_reequip_all_items.
ga_remove_aoe

Any OBJECT_TYPE_AREA_OF_EFFECT objects in the
current area are destroyed. These are objects that are created
as the result of a spell.

ga_remove_comp
string sHenchmanTag

This removes the henchman with the tag sHenchmanTag
from the party. Note that if the creature is not a henchman
but is on the roster, this will remove the creature from the
party roster.
ga_remove_effects

string sTarget
If sTarget is not blank, this call will remove all effects

from the target. Otherwise it removes all effects from the
party.
ga_remove_feat

string sTarg
string nFeat
int bAllPartyMembers

This script removes the feat nFeat from the creature
sTarg, where nFeat is the value of a FEAT_... global
constant. If bAllPartyMembers is true, then all members of
the party are stripped of the feat. See also ga_give_feat.
ga_replace_comp

string sCompToRemove
string sCompToAdd

This script removes the companion with the tag
sCompToRemove from the party then adds the companion
with the tag sCompToAdd. It does not abort if wither
variable is not a valid tag for a companion.
ga_reputation

int nActLevel
int nRepOver

The player's reputation is tracked as a local variable on the
PC, which determines whether the character is liked or
disliked. This script is used to adjust the value of the
player's reputation based on a particular act. The nActLevel
variable is an integer variable in the range from +4 to -4,
depending on how noble or villainous the act they
performed. The shift in the reputation is determined by a
lookup in the 'reputation.2da' file, with the column set to
nActlevel and the row determined by the current reputation.

For example, if the current reputation is 54 then the
reputation level is row 2 and the character is “Liked”. If
nActlevel is set to -2, then the column named “Disliked” is
used, for an adjustment of -6. The new reputation will be

102

Action Scripts.

48, which drops the character to “Known”. If the nActlevel
was set to -3, the table lookup gives an adjustment of “S:1”.
This causes an alignment shift to “Known” with a value of
38.

If nRepOver is passed to the script then the reputation is
set to that value, overriding the current value and whatever
was passed to nActLevel.
ga_reset_level

string sCreature
int bUseXPMods

Typically this would be run when a creature joins the
party. The creature with the tag sCreature is set to the
average party experience level. The creature is also force
rested, thereby recovering hit points and spells. If
bUseXPMods is true, then the creature's experience
modifiers will be applied to the total before awarding the
experience to the creature.
ga_reset_level_by_xp

string sCreature
int nXP
int bUseXPMods

This script completely resets the creature sCreature to
level zero, then grants the creature nXP experience points
and automatically levels the creature to the maximum
allowed level allowed for the creature's level-up package. If
nXP is set to -1, then the current experience point total of
the creature will be used instead. If bUseXPMods is true,
then the creature's experience modifiers will be applied to
the total before awarding the experience to the creature.
ga_rest

The current speaker performs a rest action.
ga_rest_convo

int nAction
The script notes describe this as the master script for a

conversation “rest”. The only value that will do anything is
nAction equal to 100.
ga_restoration

string sTarget
int bFactionWide
int bGroupWide
int bSuppressVFX

This script will cast the spell 'greater restoration' on the

creature sTarget, curing the subject of most negative
effects. If bFactionWide is true, all members of the target's
faction are cured. This can be used to cure the party, for
example. The bGroupWide is used for groups, per the
ginc_group include file calls. Setting bSuppressVFX to true
will prevent the spell visual effect from playing.
ga_restore_equipped

string sCreature
If the equipped items of the creature sCreature were

recorded by a call to ga_remember_equipped, this script
will restore the items to their previous slots.
ga_rm_go_to_hangout

string sRosterName
The party member with the roster name sRosterName is

removed from the party and sent to the hangout. The latter
can be set using the ga_rm_set_hangout script. The default
hangout spot for a roster member is “hangout_” plus the
character's roster name. It tries to find an object with this
tag (such as a waypoint) then dispatches the party member
to that location.
ga_rm_set_hangout

string sRosterName
string sHangOutWPTag

This script changes the hangout spot for roster member
sRosterName to the tag sHangOutWPTag. This tag is used
with the ga_rm_to_hangout script.
ga_roster_add

string sRosterName
string sTemplate

This adds the creature with the template sTemplate to the
roster using the 10-character name sRosterName. This name
is used with other roster-related scripts to refer to this
creature.
ga_roster_add_template

string sRosterName
string sTemplate

This is identical to ga_roster_add except that it has no
debugging entries.
ga_roster_add_object

string sRosterName
string sTarget

This script will add the creature sTarget to the roster using

103

Action Scripts.

the 10-character name sRosterName. The creature remains
in the game world but is available for addition to the
player's party. If sTarget is not specified, it defaults to the
conversation owner.
ga_roster_campaignnpc

string sRosterName
int nCampaignNPC

If sRosterName is a valid member of the roster, this will
make the creature persistent across all modules in the
campaign. The creature will be selectable as a party
member throughout the campaign.

I am uncertain about the purpose of nCampaignPC.
ga_roster_despawn

string sRosterName
This function saves the creature with the roster name

sRosterName, then despawns it. The notes for this script
recommend that this should be the only script used to
despawn party members. See also ga_roster_spawn.
ga_roster_despawn_all

int bExcludeParty
This function will despawn all members of the roster,

effectively performing a ga_roster_despawn on each
member. If bExcudeParty is true, only roster members that
are not currently in the party will be despawned.
ga_roster_gui_screen

This activates the graphical tool that allows the player to
select the party members. Normally, party members can
only be added or removed if they are selectable. See the
ga_roster_selectable script.
ga_roster_party_add

string sRosterName
This script will add the roster member with the roster

name sRosterName to the player's party. For a multi-player
game, this will fail if the roster member is already in a
different player's party. When the roster member is added, it
will appear at the PC's location.
ga_roster_party_remove

string sRosterName
The party member with the roster name sRosterName will

be removed from the party. The creature is not removed
from the game and it's current state is not saved. Compare
to ga_roster_despawn.

ga_roster_party_remove_all
int bDespawnNPC
int bIgnoreSelectable

This script will remove all selectable roster members from
the player's party. If bDespawnNPC is true, the characters
will also be despawned. If bIgnoreSelectable is true, all
non-selectable party members will also be removed. See
ga_roster_selectable.
ga_roster_remove

string sRosterName
This script will remove the creature with the roster name

sRosterName from the list of characters that can be selected
as party members.
ga_roster_selectable

string sRosterName
int bSelectable

The roster graphical tool can add or remove party
members can added to the party if they are selectable. This
script will set the selectable state of roster member
sRosterName to the boolean bSelectable. If a current party
member is set to non-selectable, it can not be removed from
the party.
ga_roster_spawn

string sRosterName
string sTargetLocationTag

This script will cause an instance of the roster member
sRosterName at the location of the object with identifying
tag sTargetLocationTag. If the creature already exists in the
game, it will be moved to that location. See also
ga_roster_despawn.
ga_roster_spawn_rand_loc

string sRosterNameList
string sTargetLocationTag
float fRadius

The parameter sRosterNameList consists of a comma-
separated list of roster names. This script will spawn each
valid roster member in this list at a random location within a
radius fRadius of the location of an object with the tag
sTargetLocationTag.
ga_scripthidden

string sTag
int bHide

If bHide is true, this script causes the nearest creature with

104

Action Scripts.

the tag sTag to disappear. Otherwise it will cause the
creature to appear. The concealment is implemented by
setting the creature's ScriptHidden property to true. Thus it
will not render, does not interact via a collision and can not
be selected by a player.
ga_set_animation_condition

int nFlag
int bState
string sTarget

This script updates the value of the target sTarget's local
string variable “NW_ANIM_CONDITION” that is used to
store various animation flags. Valid flags are shown in the
table below, and are defined as the NW_ANIM_FLAG_...
hexadecimal constants in the 'x0_i0_anims' include file.

Value Animation flag

1 NPC has been initialized
2 Animate each heartbeat
4 Use voicechats
8 NPC is animating
16 Interacting with a placeable
32 Has gone inside an interior area
64 The NPC has a home waypoint
128 Currently talking
256 The NPC is mobile
512 The NPC is mobile in a close range
1024 The NPC is civilized
2048 Will close an open door

Thus, passing a value of nFlag = 4 + 128 = 132 will set the
the NPC to chatter and behave as though talking. If bState is
true, the flag will be activated in the variable; otherwise it
will be turned off.
ga_set_associate_state

int nFlag
int bState
string sTarget

This script is used to set behavioral flags for the associate
sTarget. The script notes say that some flags should not be
modified by this script, but not which flags.
ga_set_flag

This script sets a global integer variable named

“GlobalFlagName” to '1'. It's purpose is unknown to me.
ga_set_weapon_visibility

string sTarget
int bVisible
int nType = 0
int bForWholeGroup = 0
int bForWholeFaction = 0

This script will set the visibility for a weapon belonging to
sTarget by a call to SetWeaponVisibility. If bVisible is true,
the weapon is set to visible; otherwise it is set to invisible.
The script notes say that nType is not currently used, but
this is passed as the third argument to SetWeaponVisibility.
If bForWholeGroup is true, the script is applied to all
members of a group, per the ginc_group include file. If
bForWholeFaction is true, the script is applied to all
members of a faction.
ga_set_wwp_controller

string sTarget
string sWalkWayPointsTag

A creature sTarget can be set to walk a set of waypoints
with the tag that begins “WP_”, followed by the creature
tag, then by a numerical suffix. (See the section on Walk
Path in the first volume.) This script will cause the creature
sTarget to walk the set of way points that were intended for
the creature with the tag sWalkWayPointsTag, rather than
walking it's own set of waypoints.
ga_setbumpstate

string sTarget
int nBumpState

This will set the Bump State flag of the creature sTarget
to nBumpState. For example, if you made a guard
unbumpable so that it would stay in position and block
access through an opening, this can be used to allow the
guard to move aside and let a PC pass through.
ga_setimmortal

string sTarget
int bImmortal

This script can be used to change the Immortal property on
the creature sTarget to the state bImmortal. An immortal
creature can not be reduced below 1 hit point or slain.
Making a creature immortal can be useful when you want
an opponent to remain alive long enough to perform some
action, such as teleporting away in the nick of time,

105

Action Scripts.

surrendering to the party, or making a dying speech.
ga_setplotflag

string sTarget
bPlotFlag

This will set the Plot flag on creature sTarget to the state
bPlotFlag. Changing a creature to a plot object makes it
invulnerable to attacks.
ga_setrecipes

This script will set up all of the recipes for crafting items
in global memory. This only needs to be run once in a
module.
ga_sound_object_play

string sTarget
This will activate the sound object sTarget, causing it to

play it's sound. The object is still subject to the behavior
limits regarding when the sound can be played, so it should
not play at times when it is set not to make a sound. See
also ga_play_sound, which allows a delay before playing
the sound.
ga_sound_object_set_position

string sTarget
string sPositionTag
float fXoffset
float fYoffset
float fZoffset

This script will set the location of a sound object sTarget
to the location of sPositionTag, with an offset vector
defined by (fXoffset, fYoffset, fZoffset). If sPositionTag is
invalid or empty, the position is set to the origin of the area
plus the offset vector.
ga_sound_object_set_volume

string sTarget
int iVolume

This script sets the volume of the target sTarget to the
value iVolume. Valid values for iVolume are integers in the
range 0 to 127, inclusive.
ga_sound_object_stop

string sTarget
This will cause the sound object sTarget to stop playing.

ga_start_convo
string sTarget
string sConversation
int bPrivateConversation
int bPlayHello
int bIgnoreStartDistance
int bDisableCutsceneBars

This will immediately launch a new conversation
sConversation with the target sTarget. It can be used to
immediately jump from one conversation to another. If
bPrivateConversation is true, then the conversation will
only be audible to the PC. If bPlayHello is true, then the
conversation owner will play an initial greeting sound.

If bIgnoreStartDistance is true, the conversation can start
at any separation distance between the conversation owner
and the PC. If bDisableCutsceneBars is true, cutscene bars
will be disabled in NWN2-style conversations. This causes
the camera display to fill the screen and text strings to
appear on whatever background the camera provides.
ga_start_mod

string sModuleName
This script runs the command that will launch the module

sModuleName. The current module is shut down and all
currently-connected players are shifted to the new module.
ga_summon_animal_companion

string sTarget
If the target sTarget has an animal companion, this script

will summon it into play. If sTarget is blank, this will
summon the animal companion of the conversation owner.
ga_summon_familiar

string sTarget
If the target sTarget has a familiar, this script will summon

it into play. If sTarget is blank, this will summon the animal
companion of the conversation owner.
ga_take_gold

int nGold
int bAllPartyMembers

This script will cause the amount nGold to be removed
from the gold possessed by the player and passed to the
conversation owner. If bAllPartyMembers is true, the gold
is removed from each member of the party. This script does
not check whether the characters actually have the gold.

106

Action Scripts.

You can use the condition script gc_check_gold to
determine if a party member has the required amount of
gold.
ga_take_item

string sItemTag
int nQuantity
int bAllPartyMembers

This will remove the item with the tag sItemTag from the
possession of the player. If nQuantity is greater than 1, that
many items of the same type will be removed. Setting
nQuantity to -1 will remove all such items. If the parameter
bAllPartyMembers is true, the same number of the item will
be removed from the inventory of all party members.

The ga_give_item script can be used to give the party
members a temporary item before using ga_take_item to
remove it later.
ga_talkto

string sTarget
This will set a local variable on the conversation owner,

indicating that you have talked to it. You can use the
gc_talkto script to check if this variable has been set.
ga_time_advance

int nHour
int nMinute
int nSecond
int nMillisecond

This script will increment the game clock by nHour hours,
nMinute minutes, nSecond seconds and nMillisecond
milliseconds. Overflow values will be added to the next
time field. Thus if the current time is 2000 hours and you
add 10 hours, the clock will be advanced to 0600 on the
following day. Negative values will have no effect.
ga_travel

string sDestination
string sTarget
int bRun
float fDelay

The target sTarget moves to the destination sDestination
after a delay of fDelay seconds. If the sDestination is in the
same area, the target will walk there. If bRun is true, the
target will run rather than walk. When sDestination is in a
different area, the target will move to the nearest door or
waypoint, then perform a jump action to the destination.

ga_unequip_hands
string sOwner

The creature sOwner will unequip items in the left and
right hands. These items will be remembered so that they
can be re-equipped by the ga_reequip_all_items script.
ga_unequip_slot

string sTarget
int nSlot

The creature sTarget will unequip the item in the slot
nSlot. The nSlot parameter can be the value of any of the
INVENTORY_SLOT_... global constants. The unequipped
item is remembered so that it can be restored by the
ga_reequip_all_items script.
ga_xp_award_2da_entry

int iXPAwardID
int bIndividualOnly

This script looks up an experience point award in the
iXPAwardID row of the campaign's 'k_xp_award.2da' file.
If bIndividualOnly is true, the experience will be awarded to
the player. Otherwise the experience is awarded to the
entire team.

107

Condition Scripts.

Condition Scripts.
These scripts can be called as conditions within a

conversation. The boolean return value is used to control
whether a branch in the conversation tree is followed.

Some of these scripts use a mathematical rule that is
passed as a string argument. These rules consist of an
comparison operator followed by a numerical constant. The
operator can be one of: '=', '<', '>' or '!', which test for
'equals', 'less than', 'greater than' and 'not equals',
respectively. Thus, “>20” is used to check if an integer
variable is above 20, “!5” is used to test if a value is not
equal to five, and so forth.
gc_align_chaotic

This script returns true if the speaker has a chaotic
alignment.
gc_align_evil

This script returns true if the speaker has an evil
alignment.
gc_align_good

This script returns true if the speaker has a good
alignment.
gc_align_lawful

This script returns true if the speaker has a good
alignment.
gc_alignment

int nCheck
int bLawChaosAxis

This script returns true if a numerical value of the player's
ethical alignment is greater than nCheck. The scale is from
3 to -3, with 0 being neutral. If the bLawChaosAxis variable
is zero, check the good/evil axis. Otherwise, check the
law/chaos axis.

As the good/evil and law/chaos values are normally stored
on a scale of 0 to 100, the scale is converted to the -3 to +3
scale as follows:

Alignment
3 to -3 Value

Equivalent
0 to 100 Value

3 99

2 85

1 75

0 50

-1 25

-2 15

-3 5

gc_area
string sArea
string sCreature

This returns true if the creature with tag sTarget is in the
area with the tag sArea. The sCreature variable defaults to
OBJECT_SELF.
gc_background

int nBackground
This returns true if the player has the specified value of

nBackground. The background can be any of the
BACKGROUND_... global constants.
gc_check_gold

int nGold
int bMP

If nMP is false, return true if the PC has more gold than
nGold. If nMP is true, return true if every PC has more gold
than nGold.
gc_check_item

string sItemTag
int bCheckParty

If bCheckParty is false, return true if the PC has the item
identified by sItemTag in their inventory. If bCheckParty is
true, return true only if every PC has the item in their
inventory.
gc_check_level

int nLevel
int bMP

If bMP is false, return true if the PC has nLevel or more
hit dice. If bMP is true, return true only if every PC has

108

Condition Scripts.

nLevel or more hit dice.
gc_check_race

string sTarget
string sRaceType

The string sRaceType contains the name of a racial type.
This function returns true if the object specified by sTarget
is of the same racial type. It prints an error string if an
invalid race parameter is specified.

The possible values of sRaceType are: 'aberration',
'animal', 'beast', 'construct', 'dragon', 'dwarf', 'elemental',
'elf', 'fey', 'goblinoid', 'giant', 'gnome', 'halfelf', 'halfling',
'halforc', 'human', 'humanoid', 'magical_beast', 'monstrous',
'orc', 'ooze', 'outsider', 'reptilian', 'shapechanger', 'undead' or
'vermin'. The 'humanoid' type is a group that encompasses
goblinoid, monstrous, orc and reptilian.
gc_check_race_pc

string sRace
The racial type of the speaker is compared with the sRace

parameter, and the script returns true if they match. This
script recognizes a fixed set of race names or an equivalent
number.

Name Number

dwarf 1

elf 2

gnome 3

halfelf 4

halfling 5

halforc 6

human 7

outsider 8

This function will also recognize certain racial subtypes,
as follows:

Name Number

shielddwarf 11

moonelf 12

rockgnome 13

sr-halfelf 14

lightfoothalf 15

sr-halforc 16

sr-human 17

golddwarf 18

duergar 19

drow 20

sunelf 21

woodelf 22

svirfneblin 23

stronghearthalf 26

aasimar 27

tiefling 28

Finally, the following strings can be used to identify
selected the so-called civilized racial subtype groupings.

• “civdwarves” or “41” – all of the dwarf subraces
except the duergar.

• “civelves” or “42” – all of the elf subraces, except
drow and wild.

• “civhalflings” or “43” – all of the halfling subraces,
except ghostwise.

gc_check_stats
int nStat
int nValue

The nStat must set to one of the ABILITY_... global
constants. This script will return true only if the value of the
speaker's attribute score is at or above the nValue variable.
gc_class_level

int nClass
string sLevelCheck
string sTarget

This script checks the number of class levels the character
sTarget has in the class nClass. The sLevelCheck string is a
integer comparison; see the CompareInts function in

109

Condition Scripts.

ginc_var_opts for details. The nClass must be equal to one
of the CLASS_... global constants.

Example: for nClass = CLASS_TYPE_HARPER and
sLevelCheck = “>2”, the script returns true if the target has
at least 3 levels in the Harper prestige class.
gc_comp_remove

string sCompanion
If the creature with tag sCompanion is currently in the

party and can be removed, return true. Otherwise return
false.
gc_dead

string sCreatureTag
Return true only if the creature with tag sCreatureTag is

neither living nor undead.
gc_deity

string sDeity
Returns true only if the deity of the speaking character is

the same as sDeity. The deity name is case insensitive.
gc_distance

string sTagA
string sTagB
string sCheck

The sTagA and sTagB arguments are the tags of two
objects. This script finds the distance from the object with
tag sTagA to the nearest object with tag sTagB. The sCheck
variable is a floating point comparison statement consisting
of a mathematical operator and a floating point value. If the
distance from A to B satisfies the comparison statement,
this script returns true. See the CheckVariableFloat function
for more on the comparison operator.
gc_distance_pc

string sTag
string sCheck

This script is similar to gc_distance, except that the
distance is between the object with tag sTag and the nearest
PC.
gc_equipped

string sItem,
string sTarget,
int bExactMatch

This script returns true only if the creature with tag
sTarget has the item with tag sItem in their inventory. If

sTarget is an empty string, use the speaking PC. If sTarget
is the non-standard constant “$PARTY”, then the entire
party is checked. If bExactMatch is false, sItem can be a tag
substring.
gc_false

This script will always return false. It can be used as a
placeholder in a dialog.
gc_global_float

string sVarName
string sCheck

This script checks the value of the global floating point
variable defined by sVarName using the sCheck
mathematical comparison, returning true if the comparison
is correct. See the CheckVariableFloat function for more on
the comparison operator.
gc_global_int

string sVarName
string sCheck

This script checks the value of the global integer variable
defined by sVarName using the sCheck mathematical
comparison, returning true only if the comparison is correct.
See the CompareInts function in ginc_var_opts.
gc_global_string

string sVariable
string sCheck

Return true if the value of the global string variable
sVariable matches the contents of the string sCheck.
gc_has_feat

string sTag
int nFeat
int bIgnoreUses

Check if the creature identified by sTag has the feat
numbered nFeat. If sTag is blank, check the speaker. If
bIgnoreUses is true, only check if the player has the feat.
Otherwise, also check the number of uses left of the feat.

The feat number can be obtained from the value of the
corresponding FEAT_... global constant. Alternatively, the
lists under the feats tab for a character's property window
will list the ID number for each feat.

110

Condition Scripts.

gc_henchman
string sTarget
string sMaster

This script returns true if the creature identified by
sTarget is a henchman of the creature identified by sMaster.
If sMaster is blank, use the speaker. It returns false if either
sTarget or sMaster is invalid for the area containing
OBJECT_SELF.
gc_henchmen_max

string sCheck
This script returns true only if the maximum number of

henchmen allowed satisfies the integer comparison
statement sCheck. See the CompareInts function in
ginc_var_opts.
gc_is_enemy_near

float fRadius
int bLineOfSight

This script returns true if an enemy creature is within
radius fRadius of the speaker. If bLineOfSight is true, the
enemy creature must also be within the line of sight of the
speaker for this function to return true.
gc_is_female

This script returns true if the speaker is female.
gc_is_in_combat

This script returns true if the speaker is currently in
combat.
gc_is_in_party

string sTargetTag
This script returns true if the creature identified by the tag

sTargetTag is in the part of the speaker.
gc_is_male

This script returns true if the speaker is male.
gc_is_near

string sTag
string sObjTypes
float fRadius
int bLineOfSight

This script will return true if there is an object belonging
to a set of types within a spherical radius fRadius of the
speaker. The object must contain the string sTag and belong
to the object type specified by sObjTypes. The string
sObjTypes can be set to “ALL” or contain one or more of

the following letters:

Letter Object Type

C Creature

I Item

T Trigger

D Door

A Area of Effect

W Waypoint

P Placeable

S Store

E Encounter

If bLineOfSight is true, the script will only return true if
the object is within the line of sight of the speaker.
gc_is_open

string sObjectTag
Return true if the object identified by sObjectTag is open.

The object must be a placeable or a door.
gc_is_owner

string sTag
This script will return true if the owner of the conversation

has identifying tag sTag.
gc_is_skill_higher

int nSkillA
int nSkillB
int bStrictlyGreaterThan

This script compares two of the speaker's skills and
determines which one is greater. The value of nSkillA and
nSkillB are determined by the following table:

111

Condition Scripts.

Skill Value

Appraise 0

Bluff 1

Concentration 2

Craft Alchemy 3

Craft Weapon 4

Diplomacy 5

Disable Device 6

Heal 7

Intimidate 8

Listen 9

Lore 10

Move Silently 11

Open Lock 12

Parry 13

Perform 14

Ride 15

Search 16

Craft Trap 17

Sleight of Hand 18

Spellcraft 19

Spot 20

Survival 21

Taunt 22

Tumble 23

Use Magic Device 24

Note that Ride is not a valid skill. If bStrictlyGreaterThan is
true, then this script returns true only if the value of nSkillA
is greater than nSkillB.
gc_item_count

string sItemTag
string sCheck
int bPCOnly

This script checks the number of items with the tag
sItemTag in the inventory of the PC or the party, then
performs an integer comparison using the rule passed by
sCheck. See the CompareInts function in ginc_var_opts. If

bPCOnly is true, only check the speaker; otherwise check
the party.

Example: if sCheck is “<5”, return true if there are fewer
than 5 items matching sItemTag in the inventory.
gc_journal_entry

string sQuestTag
string sCheck

This script will examine the state of the quest matching
sQuestTag, then perform a check using the sCheck
condition. This check is identical to the sCheck parameter in
the gc_local_int call.
gc_local_float

string sVariable
string sCheck
string sTarget

This script will compare the value of a local float variable
sVariable belonging to sTarget using the math rule sCheck.
However, '==' operations will usually fail because of
accuracy. If sTarget is blank, use OBJECT_SELF. See the
CheckVariableFloat function for more on the comparison
operator.
gc_local_int

string sVariable
string sCheck
string sTarget

This script will compare the value of a local integer
variable sVariable belonging to sTarget using the math rule
sCheck. If sTarget is blank, use OBJECT_SELF. See the
CompareInts function in ginc_var_opts.
gc_local_string

string sVariable
string sCheck
string sTarget

This script will compare the value of a local string variable
sVariable belonging to sTarget against sCheck. It will
return true if the strings match.
gc_module

string sTag
This script compares the string sTag against the tag of the

module and returns true only if they match.

112

Condition Scripts.

gc_node
int iNodeIndex

A variable sn_NodeIndex is set on a creature by
gtr_speak_node. If the value of this variable is equal to
iNodeIndex, set sn_NodeIndex to zero and return true.
gc_num_comps

string sCheck
This script compares the number of companions in the

party using the rule sCheck, returning true if the match
comparison is correct. See the CompareInts function in
ginc_var_opts.
gc_num_pcs

string sCheck
This script compares the number of PCs in the party using

the rule sCheck, returning true if the match comparison is
correct. See the CompareInts function in ginc_var_opts.
gc_obj_valid

string sTag
int bAreaOnly

If the object specified by tag sTag is valid for the current
area, return true. If bAreaOnly is false, check the entire
module.
gc_rand_1of

int iMax
This script will return true if the result of a random integer

generation equals 1. This can be used to choose a random
response by decrementing iMax by 1 for each response. For
example:

• Response 1: iMax = 4.

• Response 2: iMax = 3.

• Response 3: iMax = 2.

• Response 4: Fall-through response.
gc_range_day

int iStartDay
int iEndDay

This script will return true if the current day is in the range
iStartDay to iEndDay. The variables have a value between
1 and 28.

gc_range_hour
int iStartHour
int iEndHour

This script will return true if the current hour is in the
range iStartHour to iEndHour. The variables have a value
between 1 and 23.
gc_range_month

int iStartMonth
int iEndMonth

This script will return true if the current month is in the
range iStartMonth to iEndMonth. The variables have a
value between 1 and 12.
gc_range_year

int iStartYear
int iEndYear

This script will return true if the current month is in the
range iStartYear to iEndYear. The default start year is 1372.
gc_reputation

int nRepLevel
int nRepNumber

If nRepNumber is not equal to zero, return true only if the
player's reputation is at or above nRepNumber.

If nRepNumber is zero, this script gets the value of the
local “Player's Reputation” variable and converts it to a
scale between -4 and 4. It then returns true if nRepLevel is
at or above the converted scale value.

Reputation Level

To -110 -4

-109 to -80 -3

-79 to -50 -2

-49 to -25 -1

-24 to 24 0

25 to 49 1

50 to 79 2

80 to 109 3

110 or higher 4

See also ga_reputation.
gc_rm_in_hangout_area

string sRosterName
This script determines if the roster member specified by

113

Condition Scripts.

sRosterName is in the same area as the PC hangout spot.
See ga_rm_set_hangout.
gc_roster_available

string sRosterName
If the roster member sRosterName is available to be added

to the party, return true. This script will return false if the
roster member is in another party or is currently
unselectable.
gc_roster_campaignnpc

string sRosterName
Return true only if the CampaignNPC flag of

sRosterName is set to true. If sRosterName is not found, this
script returns false. See also ga_roster_campaignnpc.
gc_roster_selectable

string sRosterName
This script returns true if the roster member sRosterName

is selectable. An NPC can be set to non-selectable for plot
reasons, etc.
gc_singleplayer

This script returns true if this is a single-player game.
gc_skill_dc

int nSkill
int nDC

This script performs a skill check against skill nSkill at DC
equal to nDC, then returns true if the check is successful.
See gc_is_skill_higher for the list of skill indices.
gc_skill_rank

int nSkill
int nRank

This script returns true if the speaker has a rank in skill
nSkill at or above nRank. See gc_is_skill_higher for the list
of skill indices.
gc_talkto

string sTarget
Return true if this is the first time the PC has talked to the

target identified by sTarget. If sTarget is blank, the target is
the owner of the dialog.
gc_time_of_day

string sTimeOfDay
This script checks if the time of the day is within a range

specified by sTimeOfDay. This string can have one of the
following values:

String Time interval

“DAWN” The hour of dawn

“DAY” The time between dawn and dusk

“DUSK” The hour of dusk

“NIGHT” The time between dusk and dawn

“NOON” The hour of noon

“MIDNIGHT” The hour of midnight

gc_true
This script will always return true. It can be used as a

placeholder in a dialogue.

114

Include Files.

Include Files.
The standard toolset scripts access a set of include files via

an include statement near the top. For example:
#include "ginc_actions"
is used to include 'ginc_actions' calls and constants. These
include files can be examined by scrolling down the menu
of available scripts to the set that begins with “ginc”.

• ginc_2da – routines used for constants and data
lookup functions for the 2DA files.

• ginc_actions – various calls to have an object
perform an action. In general these are applied to the
object that runs them, rather than having the object
passed as a parameter.

• ginc_ai – artificial intelligence calls for determining
behaviors.

• ginc_alignment – functions for adjusting character
alignment. This is treated on a scale of 0 to 100, with
subdivisions of 0–30, 31-69 and 70–100. When an
alignment crosses into a different subdivision, it is
adjusted to the middle of that subdivision. If the
alignment of the PC is changed, characters in the
same party can also receive an alignment adjustment.

• ginc_autosave – the auto-save functions for single
player mode.

• ginc_baddie_stream – routines for steady streams of
evil doers.

• ginc_behavior – routines for checking and changing
the current creature behavior, such as determining if a
creature is too busy to perform a task or how they
react to a damaging spell.

• ginc_companion – utility functions for companions
to the PC. These includes retaining appropriate
companions when loading a module, transitioning all
companions when travelling to a new area, adding or
removing a companion, and spawning companions at
a certain area.

• ginc_crafting – routines related to the crafting skills.
These are used for the workbench placeables.

• ginc_cutscene – routines that are used in cut scenes,

such as in NWN2-style conversations.
• ginc_death – routines for processing death or

unconsciousness.
• ginc_debug – specialized routines that are used when

debugging mode is active.
• ginc_effect – used to create or remove visual effects.
• ginc_event_handler – routines used to manage the

event handling scripts for creatures, associates or
objects.

• ginc_group – used to work with groups of objects,
especially creatures. After a group has been created,
various calls can be applied to all members. They can
also be arranged in a formation.

• ginc_gui – calls for displaying the load game dialog
or party selection interface.

• ginc_henchman – routines used in the henchman
action scripts, for adding, removing and replacing
henchmen, or modifying the maximum number of
henchmen.

• ginc_ipspeaker – calls used with the Ipoint Speaker
placeable for running a location-based conversation.

• ginc_item – these are routines that are used for items
and inventory management, including functions for
stores.

• ginc_item_script – a handful of routines for item
scripts.

• ginc_journal – various calls related to journal
categories and entries, including gold, item and
experience point rewards.

• ginc_math – various math utility functions, including
random value generators, tests for proximity, vector
comparators, and hex string to number converters.

• ginc_misc – a handful of miscellaneous calls.
• ginc_nx1spells – a function for creeping cold.
• ginc_object – calls for creating objects at a waypoint

or a tagged object location, as well as counting or
destroying objects.

• ginc_param_const – this includes routines for

115

Include Files.

parsing parameters, converting string patterns to
constants, and obtaining objects by tag or special
identifier. It also defines standard constants used in
other include files.

• ginc_reflection – this has functions for rotation and
reflection operations. The latter can be used for
beams reflecting off objects.

• ginc _restsys – these constants and functions are used
for the wandering monster rest system.

• ginc_roster – these routines are for management of a
roster. See the Faction section of the system
functions.

• ginc_sound – a few utility routines for saving music
tracks as variables then restoring them later.

• ginc_symbol_spells – these routines are specific to
the “Symbol of” spells, such as symbol of death.

• ginc_time – various time management functions,
including routines for time-based events.

• ginc_trigger – these functions are related to triggers.
It includes routines for managing speak triggers.

• ginc_utility – miscellaneous sundry routines. Mostly
for creating and spawning objects.

• ginc_var_opts – some of these routines use a
mathematical comparison consisting of a relational
operator followed by a constant. The operator can be
'=', '<', '>' or '!'. If the operator is not specified, '=' is
assumed. This function applies the comparison
defined by the string to the value, returning true if the
comparison is correct and false otherwise.

• ginc_vars – various calls for local and global
variables, including modifying values, arrays, global
objects and retrieving the prefix or suffix of a string.

• ginc_worldmap – constants and functions related to
world maps.

• ginc_wp – these functions are used with scripted
waypoints. For example, making NPCs stop and chat
with each other.

• nw_o[0-2]_... – object scripts.
• nw_s[0-3]_... – spell hook scripts.

• nw_t[01]_... – trap scripts.
• nwn2_inc_spells – Utility spell functions.
• x2_inc_craft – This is the central script for player

crafting through feats or skills. For example, it
includes the 'CIGetSpellWasUsedForItemCreation'
call that is executed by the X2PreSpellCastCode,
which is run in each spell script. If the base item type
is BASE_ITEM_BLANK_POTION (101, or 'Potion
Bottle'), this runs the brew potion routine. This allows
a Wizard with the Brew Potion feat to cast a spell on
a 'Magical Potion Bottle', creating a potion of the type
of the spell.

116

Function Index.

Function Index.
The following index lists the functions defined in the toolset
include files, followed by the name of the include file where
the function is implemented. (Most of the private functions
have not been included.) If you paste this list into a script
called '___INDEX' then wrap the entire text in comment
delineators (/* ...content... */), you can use it to quickly
lookup function locations.

Function calls are included from the following files: ginc_*,
inc_*, kinc_spirit_eater, nw_i0_*, nwn2_inc_*, x0_i0_*,
x0_inc_*, x1_inc_*, x2_am_inc, x2_i0_spells and x2_inc_*.

ActionCreateObject – ginc_actions, x0_i0_transform
ActionFireEvent – ginc_actions
ActionForceExit – ginc_actions
ActionForceMoveToTag – ginc_actions
ActionOrientToObject – ginc_actions
ActionOrientToTag – ginc_actions
ActionPlayAnimationUncommandable – ginc_actions
ActionPrintString – ginc_actions
ActionPsionicCharm – inc_mf_combat
ActionPsionicMB – inc_mf_combat
ActionRemoveMyself – ginc_actions
ActionSpeakNode – ginc_actions
ActionSpeakOneLiner – ginc_wp
ActionStartBeam – ginc_reflection
ActionTurnHostile – ginc_actions
ActivateFleeToExit – nw_i0_generic
AddCompanionsToRosterList – ginc_roster
AddHenchmanToCompanion – ginc_companion
AddHighlight – x0_i0_highlight
AddItemPropertyAutoPolicy – ginc_crafting
AddNearestWithTagToGroup – ginc_group
AddTemporaryHighlight – x0_i0_highlight
AddToGroup – ginc_group
AdjustAlignmentLawChaos – ginc_alignment
AdjustAlignmentGoodEvil – ginc_alignment
AdjustAlignmentOnAll – x0_i0_partywide
AdjustReputationWithFaction – x0_i0_partywide
AdvanceToNextToken – x0_i0_stringlib
AIAssignDCR – ginc_ai
AIAttackInOrder – ginc_ai
AIAttackPreference – ginc_ai

AIContinueInterruptedScript – ginc_ai
AIDamageSwitchEndStatement – ginc_ai
AIFinitePursuit – ginc_ai
AIGetIsSpellQueued – ginc_ai
AIIgnoreCombat – ginc_ai
AIInterceptEventHandler – ginc_ai
AIMakeCounterCaster – ginc_ai
AIMakeProtector – ginc_ai
AIMakeTank – ginc_ai
AIResetType – ginc_ai
AIRestoreInterruptedScript – ginc_ai
AISpellQueueEnqueue – ginc_ai
AITurnOffDamageSwitch – ginc_ai
AITurnOnDamageSwitch – ginc_ai
AmIAHumanoid – nw_i0_spells
AngryTalk – ginc_wp
AnimateWithOther – ginc_wp
AnimationNeedsWait – ginc_wp
AnimDebug – x0_i0_anims
AnimInitialization – x0_i0_anims
AppendGlobalList – x0_i0_stringlib
AppendSpellToName – c2_inc_craft
AppendToList – x0_i0_stringlib
AppendUniqueToList – x0_i0_stringlib
AppendUniqueToNVP – ginc_param_const
ApplyDeathToSpiritEater – kinc_spirit_eater
ApplyEncodedEffectToItem – ginc_crafting
ApplyEncodedEffectsToItem – ginc_crafting
ApplyFatigue – nwn2_inc_metmag
ApplyFriendlySongEffectsToArea – nwn2_inc_metmag
ApplyFriendlySongEffectsToParty – nwn2_inc_metmag
ApplyFriendlySongEffectsToTarget – nwn2_inc_metmag
ApplyHenchmanModifier – ginc_companion
ApplyHostileSongEffectsToArea – nwn2_inc_metmag
ApplyMetamagicDurationMods – nwn2_inc_metmag
ApplyMetamagicDurationTypeMods – nwn2_inc_metmag
ApplyMetamagicVariableMods – nwn2_inc_metmag
ApplySEFToLocation – ginc_effect
ApplySEFToObject – ginc_effect
ApplySEFToObjectByTag – ginc_effect
ApplySEFToWP – ginc_effect
ApplySongDurationFeatMods – nwn2_inc_metmag
ApplySpiritEaterFeatList – kinc_spirit_eater
ApplySpiritEaterStage – kinc_spirit_eater

117

Function Index.

ApplySpiritEaterStatus – kinc_spirit_eater
ArcaneArcherCalculateBonus – x0_i0_spells
ArcaneArcherDamageDoneByBow – x0_i0_spells
AskPatronToLeave – x2_am_inc
AssignAOEDebugString – nw_i0_spells
AssociateCheck – x0_i0_assoc
AttemptAreaTransition – ginc_transition
AttemptCombatCutsceneCleanUp – ginc_cutscene
AttemptInterjectionOrPopup – x2_inc_banter
AttemptIPSConversation – ginc_ipspeaker
AttemptNewSong – nwn2_inc_metmag
AttemptRomanceDialog – x2_inc_banter
AttemptSinglePlayerAutoSave – ginc_autosave
AttemptToShowInfo – x2_inc_banter
AttemptToWakeUpCreature – ginc_death
AutoDC – nw_i0_plot, nw_i0_tool
AutoAlignG – nw_i0_plot
AutoAlignE – nw_i0_plot
AwardXP – ginc_journal

Backdrop – ginc_debug
BashDoorCheck – nw_i0_generic
BeamStarterInitialization
BehGetTargetThreatRating – x2_inc_beholder
BehDetermineHasEffect – x2_inc_beholder
BehDoFireBeam – x2_inc_beholder
bkAcquireTarget – x0_inc_generic
bkAttemptToDisarmTrap – x0_inc_henai
bkAttemptToOpenLock – x0_inc_henai
bkCombatAttemptHeal – x0_inc_henai
bkCombatFollowMaster – x0_inc_henai
bkEquipMelee – x0_i0_equip
bkEquipRanged – x0_i0_equip
bkEquipAppropriateWeapons – x0_i0_equip
bkEvaluationSanityCheck – x0_inc_generic
bkGetBehavior – x0_inc_henai
bkGetCosAngleBetween – x0_inc_henai
bkGetIsDoorInLineOfSight – x0_inc_henai
bkGetIsInLineOfSight – x0_inc_henai
bkManualPickNearestLock – x0_inc_henai
bkRespondToHenchmenShout – x0_inc_henai
bkSetBehavior – x0_inc_henai
bkSetListeningPatterns – x0_inc_henai
bkSetupBehavior – x0_inc_generic
Build2DAIndexCache – ginc_2da

CalcNewIntValue – ginc_var_opts

CanCreatureBeDestroyed – x0_i0_spells
CanSeePlayer – nw_i0_plot
ChangeMusicTrack – ginc_sound
ChatWithNearestCreature – ginc_wp
ChatWithObjectByTag – ginc_wp
CheckAllForSEConvoPause – kinc_spirit_eater
CheckAndApplyEpicRageFeats – x2_i0_spells
CheckAndApplyThunderingRage – x2_i0_spells
CheckAndApplyTerrifyingRage – x2_i0_spells
CheckDCStr – nw_i0_plot
CheckCharismaLow – nw_i0_plot
CheckCharismaMiddle – nw_i0_plot
CheckCharismaNormal – nw_i0_plot
CheckCharismaHigh – nw_i0_plot
CheckCurrentAction – x0_i0_anims
CheckCurrentModes – x0_i0_anims
CheckEnemyGroupingOnTarget – x0_i0_enemy
CheckForInvis – nw_i0_generic
CheckFriendlyFireOnTarget – x0_i0_enemy
CheckFriendlyFireOnTarget – x0_i0_enemy
CheckIntelligenceLow – nw_i0_plot
CheckIntelligenceNormal – nw_i0_plot
CheckIsAnimActive – x0_i0_anims
CheckIsCivilized – x0_i0_anims
CheckIsUnlocked – nw_i0_generic
CheckOrderComplete – ginc_actions
CheckPartyForItem – nw_i0_tool
CheckIntelligenceHigh – nw_i0_plot
CheckNonOffensiveMagic – nw_i0_generic
CheckTime – ginc_time
CheckVariableFloat – ginc_var_opts
CheckVariableInt – ginc_var_opts
CheckWisdomHigh – nw_i0_plot
ChooseNewTarget – x0_inc_generic
chooseTactics – nw_i0_generic
ChooseTacticsForDoor – nw_i0_generic
CIGetSpellInnateLevel – c2_inc_craft
CIGetIsCraftFeatBaseItem – c2_inc_craft
CICraftCheckBrewPotion – c2_inc_craft
CICraftCheckScribeScroll – c2_inc_craft
CICraftBrewPotion – c2_inc_craft
CICraftScribeScroll – c2_inc_craft
CICraftCraftWand – c2_inc_craft
CIGetSpellWasUsedForItemCreation – c2_inc_craft
CIUseCraftItemSkill – c2_inc_craft
CIGetIsSpellRestrictedFromCraftFeat – c2_inc_craft
CIGetCraftItemStructFrom2DA – c2_inc_craft

118

Function Index.

ClampInt – nwn2_inc_metmag
ClampFloat – nwn2_inc_metmag
ClearActions – x0_i0_assoc
ClearAllAssociatesActions – ginc_companion
ClearAllDialogue – x0_i0_common
ClearAssociatesActions – ginc_companion, x0_i0_partywide
ClearCreatureOverrideAIScriptTarget – x2_inc_switches
ClearDatabase – x2_inc_globals
ClearEventHandlers – ginc_event_handlers
ClearIfEmptyHanded – x0_i0_equip
ClearNearbyFriendActions – x0_i0_partywide
ClearPartyActions – ginc_cutscene
ClearPersonalReputationWithFaction – x0_i0_partywide
ClearRosterList – ginc_companion, ginc_roster
CloseAntiMagicEye – x2_inc_beholder
CloseSpiritBar – kinc_spirit_eater
CombatCutsceneCleanUp – ginc_cutscene
CombatCutsceneSetup – ginc_cutscene
CompareInts – ginc_var_opts
CompareLastSpellCast – x0_inc_generic
CompareVectors – ginc_math
CompareVectors2D – ginc_math
ConvertToAssociateEventHandler – ginc_event_handlers
CopyAllHenchmen – x2_inc_globals
CopyHenchmanLocals – x0_i0_henchman
CopyLocals – nw_i0_henchman
CopyVariableIntToDatabase – x2_inc_globals
CountAllObjectsInAreaByTag – x0_i0_destroy
CountEnemies – x0_i0_spells
CountEnemiesAndAllies – x0_i0_enemy
craft_drop_items – x2_inc_compon
craft_drop_placeable – x2_inc_compon
CreateAlchemyRecipe – ginc_crafting
CreateBadTideEffectsLink – x2_i0_spells
CreateBeam – ginc_effect
CreateConstructItemRecipe – ginc_crafting
CreateDistillationRecipe – ginc_crafting
CreateDoomEffectsLink – nw_i0_spells
CreateEnchantRecipe – ginc_crafting
CreateEventRouter – x0_i0_common
CreateGoodTideEffectsLink – x2_i0_spells
CreateIPSpeaker – ginc_ipspeaker
CreateItemOnFaction – ginc_item
CreateListOfItemsInInventory – ginc_crafting
CreateMagicalRecipe – ginc_crafting
CreateMundaneRecipe – ginc_crafting
CreatePrey – x2_am_inc

CreateProtectionFromAlignmentLink – nw_i0_spells
CreateRat – x2_am_inc
CreateReplacementNPC – x0_i0_npckilled
CreateSignPostNPC – nw_i0_generic
CreateWondrousRecipe – ginc_crafting
CreateWWPController – x0_i0_walkway
CreatureValidForHubUse – x2_am_inc
CTG_CreateGoldTreasure – x0_i0_treasure
CTG_CreateSpecificBaseTypeTreasure – x0_i0_treasure
CTG_CreateTreasure – x0_i0_treasure
CTG_GetIsArmor – x0_i0_treasure
CTG_GetIsBaseType – x0_i0_treasure
CTG_GetIsClothing – x0_i0_treasure
CTG_GetIsMeleeWeapon – x0_i0_treasure
CTG_GetIsRangedWeapon – x0_i0_treasure
CTG_GetIsTreasureGenerated – x0_i0_treasure
CTG_GetIsWeapon – x0_i0_treasure
CTG_GetIsWeaponNoammo – x0_i0_treasure
CTG_GetModuleBaseContainer – x0_i0_treasure
CTG_GetMonsterBaseContainer – x0_i0_treasure
CTG_GetNearestBaseContainer – x0_i0_treasure
CTG_GetRacialtypeChestTag – x0_i0_treasure
CTG_GenerateNPCTreasure – x0_i0_treasure
CTG_GetNumItems – x0_i0_treasure
CTG_GetNumItemsInBaseContainer – x0_i0_treasure
CTG_GetSpecificBaseTypeTreasureItem – x0_i0_treasure
CTG_GetTreasureItem – x0_i0_treasure
CTG_IsItemGold – x0_i0_treasure
CTG_SetIsTreasureGenerated – x0_i0_treasure
CutActionAttack – x2_inc_cutscene
CutActionCastFakeSpellAtObject – x1_inc_cutscene,

x2_inc_cutscene
CutActionCastFakeSpellAtLocation – x1_inc_cutscene,

x2_inc_cutscene
CutActionCastSpellAtObject – x2_inc_cutscene
CutActionCastSpellAtLocation – x2_inc_cutscene
CutActionCloseDoor – x2_inc_cutscene
CutActionEquipItem – x2_inc_cutscene
CutActionForceFollowObject – x2_inc_cutscene
CutActionForceMoveToObject – x2_inc_cutscene
CutActionForceMoveToLocation – x2_inc_cutscene
CutActionLockObject – x2_inc_cutscene
CutActionMoveToLocation – x1_inc_cutscene, x2_inc_cutscene
CutActionMoveToObject – x1_inc_cutscene, x2_inc_cutscene
CutActionMoveAwayFromLocation – x2_inc_cutscene
CutActionMoveAwayFromObject – x2_inc_cutscene
CutActionOpenDoor – x2_inc_cutscene

119

Function Index.

CutActionStartConversation – x1_inc_cutscene, x2_inc_cutscene
CutActionUnequipItem – x2_inc_cutscene
CutActionUnLockObject – x2_inc_cutscene
CutActionSit – x2_inc_cutscene
CutAdjustReputation – x2_inc_cutscene
CutApplyEffectAtLocation – x1_inc_cutscene, x2_inc_cutscene
CutApplyEffectToObject – x1_inc_cutscene, x2_inc_cutscene
CutApplyEffectToObject2 – x1_inc_cutscene, x2_inc_cutscene
CutBeginConversation – x2_inc_cutscene
CutBlackScreen – x1_inc_cutscene, x2_inc_cutscene
CutClearAllActions – x1_inc_cutscene, x2_inc_cutscene
CutCreateObject – x1_inc_cutscene, x2_inc_cutscene
CutCreateObjectCopy – x2_inc_cutscene
CutCreatePCCopy – x2_inc_cutscene
CutDeath – x1_inc_cutscene, x2_inc_cutscene
CutDestroyObject – x1_inc_cutscene, x2_inc_cutscene
CutDestroyPCCopy – x2_inc_cutscene
CutDisableAbort – x2_inc_cutscene
CutDisableCutscene – x2_inc_cutscene
CutFadeFromBlack – x1_inc_cutscene, x2_inc_cutscene
CutFadeOutAndIn – x1_inc_cutscene, x2_inc_cutscene
CutFadeToBlack – x1_inc_cutscene, x2_inc_cutscene
CutGetAbortDelay – x2_inc_cutscene
CutGetConvDuration – x2_inc_cutscene
CutGetDestroyCopyDelay – x2_inc_cutscene
CutGetIsAbortDisabled – x2_inc_cutscene
CutJumpAssociateToLocation – x2_inc_cutscene
CutJumpToLocation – x1_inc_cutscene, x2_inc_cutscene
CutJumpToObject – x1_inc_cutscene, x2_inc_cutscene
CutKnockdown – x1_inc_cutscene, x2_inc_cutscene
CutPlayAnimation – x1_inc_cutscene, x2_inc_cutscene
CutPlaySound – x2_inc_cutscene
CutPlayVoiceChat – x2_inc_cutscene
CutRemoveEffects – x1_inc_cutscene, x2_inc_cutscene
CutRestoreCameraFacing – x1_inc_cutscene, x2_inc_cutscene
CutRestoreLocation – x1_inc_cutscene, x2_inc_cutscene
CutRestoreMusic – x2_inc_cutscene
CutSetAbortDelay – x2_inc_cutscene
CutSetActiveCutsceneForObject – x2_inc_cutscene
CutSetActiveCutscene – x2_inc_cutscene
CutSetAmbient – x2_inc_cutscene
CutSetCamera – x1_inc_cutscene, x2_inc_cutscene
CutSetCameraSpeed – x2_inc_cutscene
CutSetCutsceneMode – x1_inc_cutscene, x2_inc_cutscene
CutSetDestroyCopyDelay – x2_inc_cutscene
CutSetFacingPoint – x1_inc_cutscene, x2_inc_cutscene
CutSetLocation – x1_inc_cutscene, x2_inc_cutscene

CutSetMusic – x2_inc_cutscene
CutSetPlotFlag – x1_inc_cutscene, x2_inc_cutscene
CutSetTileMainColor – x2_inc_cutscene
CutSetTileSourceColor – x2_inc_cutscene
CutSetWeather – x2_inc_cutscene
CutSpeakString – x1_inc_cutscene, x2_inc_cutscene
CutSpeakStringByStrRef – x2_inc_cutscene
CutStopFade – x1_inc_cutscene, x2_inc_cutscene
CutStoreCameraFacing – x1_inc_cutscene, x2_inc_cutscene
CutStoreMusic – x2_inc_cutscene

DBG_msg – x0_i0_common
dbGetCampaignFloat – x0_i0_db
dbGetCampaignInt – x0_i0_db
dbGetCampaignLocation – x0_i0_db
dbGetCampaignString – x0_i0_db
dbGetCampaignVector – x0_i0_db
dbRetrieveCampaignObject – x0_i0_db
dbSetCampaignFloat – x0_i0_db
dbSetCampaignInt – x0_i0_db
dbSetCampaignLocation – x0_i0_db
dbSetCampaignString – x0_i0_db
dbSetCampaignVector – x0_i0_db
dbStoreCampaignObject – x0_i0_db
DebugMessage – ginc_debug
DebugMessageLine – ginc_debug
DebugPrintTalentID – x0_i0_debug
DebugSpeak – nw_i0_plot
DebugSTR – nw_i0_assoc
DecrementLeisure – x2_am_inc
DeleteCampaignDBVariable – x0_i0_campaign, x0_i0_partywide
DeleteGlobalObject – ginc_vars
DeleteGroupFloat – ginc_group
DeleteGroupInt – ginc_group
DeleteGroupString – ginc_group
DeleteSavedEventHandlers – ginc_event_handlers
Depetrify – x0_i0_petrify
DepetrifyWood – x0_i0_petrify
DespawnAllRosterMembers – ginc_companion
DestroyAllPersonalItems – nw_i0_henchman
DestroyAllWithTag – ginc_object
DestroyChapterQuestItem – nw_i0_henchman
DestroyChapterRewardItem – nw_i0_henchman
DestroyItemInSlot – ginc_item
DestroyItemsInInventory – ginc_crafting
DestroyNearestObjectByTag – x0_i0_destroy
DestroyNumItems – x0_inc_skills

120

Function Index.

DestroyObjectsInAreaByTag – x0_i0_destroy
DestroyObjectsInGroup – ginc_group
DetectSecretItem – x0_i0_secret
DetectSecretItemByClass – x0_i0_secret
DetermineActionFromTactics – nw_i0_generic
DetermineAssociateCombatRound – nw_i0_assoc
DetermineClassToUse – nw_i0_generic
DetermineCombatRound – nw_i0_generic
DetermineEnemies – x0_i0_enemy
DetermineMindflayerCombat – inc_mf_combat
DetermineSpecialBehavior – nw_i0_generic
DevourCorruptionPenalty – kinc_spirit_eater
DevourDispelCallback – nwn2_inc_metmag
DimensionHop – nw_i0_plot
DispelMagicWithCallback – nwn2_inc_metmag
DisplayRestGUI – ginc_restsys
DisplaySpiritBar – kinc_spirit_eater
DoAOEBehavior – ginc_behavior
DoAlchemyCrafting – ginc_crafting
DoAvatarDeckCard – x0_i0_deckmany
DoBarkTrigger – ginc_trigger
DoBeamToTarget – ginc_reflection
DoBequestDeckCard – x0_i0_deckmany
DoCaltropEffect – x0_i0_spells
DoCaltropsEffect – x0_i0_caltrops
DoCamoflage – x0_i0_spells
DoDeckDrawPositive – x0_i0_deckmany
DoDeckDrawNegative – x0_i0_deckmany
DoDevour – kinc_spirit_eater
DoDevourDrop – kinc_spirit_eater
DoDirgeEffect – x0_i0_spells
DoDistillation – ginc_crafting
DoDonjonDeckCard – x0_i0_deckmany
DoEldritchBlast – nw_i0_invocatns
DoEldritchCombinedEffects – nw_i0_invocatns
DoEldritchCombinedEffectsWrapper – nw_i0_invocatns
DoEquipmentUpgrade – ginc_item
DoEssenceBeshadowedBlast – nw_i0_invocatns
DoEssenceBindingBlast – nw_i0_invocatns
DoEssenceBrimstoneBlast – nw_i0_invocatns
DoEssenceBewitchingBlast – nw_i0_invocatns
DoEssenceDrainingBlast – nw_i0_invocatns
DoEssenceFrightfulBlast – nw_i0_invocatns
DoEssenceHellrimeBlast – nw_i0_invocatns
DoEssenceHinderingBlast – nw_i0_invocatns
DoEssenceNoxiousBlast – nw_i0_invocatns
DoEssenceUtterdarkBlast – nw_i0_invocatns

DoEssenceVitriolicBlast – nw_i0_invocatns
DoFollowMaster – nw_i0_assoc
DoFoolDeckCard – x0_i0_deckmany
DoFountainDeckCard – x0_i0_deckmany
DoGiveXP – nw_i0_plot, nw_i0_tool
DoGrenade – x0_i0_spells
DoHarming – nw_i0_spells
DoHatchlingDeckCard – x0_i0_deckmany
DoHealing – nw_i0_spells
DoHoardDeckCard – x0_i0_deckmany
DoInterjection – x2_inc_banter
DoJob – x2_am_inc
DoJokerDeckCard – x0_i0_deckmany
DoKnaveDeckCard – x0_i0_deckmany
DoLevelUp – nw_i0_henchman, x0_i0_henchman
DoLookingGlassDeckCard – x0_i0_deckmany
DoMagicCrafting – ginc_crafting
DoMagicFang – x0_i0_spells
DoMindBlast – x2_i0_spells
DoMundaneCrafting – ginc_crafting
DoneFlagSanityCheck – ginc_vars
DoOnce – nw_i0_plot
DoOracleDeckCard – x0_i0_deckmany
DoPetrification – x0_i0_spells
DoPlagueDeckCard – x0_i0_deckmany
DoRespawn – x0_i0_henchman
DoRespawnCheck – x0_i0_henchman
DoShapeEldritchChain – nw_i0_invocatns
DoShapeEldritchCone – nw_i0_invocatns
DoShapeEldritchDoom – nw_i0_invocatns
DoShapeEldritchSpear – nw_i0_invocatns
DoShapeHideousBlow – nw_i0_invocatns
DoSpeakTrigger – ginc_trigger
DoSpecialAreaDeckCard – x0_i0_deckmany
DoSpellBreach – nw_i0_spells
DoSpikeGrowthEffect – x0_i0_spells
DoSpiritualEvisceration – kinc_spirit_eater
DoTraitorDeckCard – x0_i0_deckmany
DoTrapSpike – x0_i0_spells
DoWalkWayPointStandardActions – x0_i0_walkway
DoWyrmDeckCard – x0_i0_deckmany
DTSGenerateCharSpecificTreasure – x2_inc_treasure
DTSGenerateTreasureOnContainer – x2_inc_treasure
DTSGrantCharSpecificWeaponEnhancement – x2_inc_treasure
DTSInitialize – x2_inc_treasure
DTSSetAreaTreasureProbability – x2_inc_treasure

121

Function Index.

EffectCreepingCold – ginc_nx1spells
EffectExhausted – nwn2_inc_metmag
EffectFatigue – nwn2_inc_metmag
EffectSickened – nwn2_inc_metmag
EncounterToGroup – ginc_group
EndModule – nw_i0_henchman
EndModule – x0_i0_common
EngulfAndDamage – x2_i0_spells
EquipAppropriateWeapons – x0_i0_equip
EquipNewItem – ginc_item
ErrorMessage – ginc_debug
ErrorNotify – ginc_crafting
EscapeArea – nw_i0_plot
EvenGetCreatureTalent – x0_inc_generic
EvenTalentCheck – x0_inc_generic
EvenTalentFilter – x0_inc_generic
EvenTalentSpellFilter – x0_inc_generic
ExecuteDCR – ginc_actions
ExecuteDefaultMeteorSwarmBehavior – nwn2_inc_metmag
ExecuteDistillation – ginc_crafting
ExecuteScriptAndReturnInt – x2_inc_switches
ExplodeObject – x0_i0_corpses

Face – x2_am_inc
FaceAndPause – ginc_wp
FactionToGroup – ginc_group
FadeToBlackAllPCs – ginc_cutscene
FadeToBlackParty – ginc_cutscene
FamiliarIsBadger – inc_xp2_familiar
FamiliarIsBat – inc_xp2_familiar
FamiliarIsBear – inc_xp2_familiar
FamiliarIsBoar – inc_xp2_familiar
FamiliarIsDireWolf – inc_xp2_familiar
FamiliarIsEyeball – inc_xp2_familiar
FamiliarIsFairyDragon – inc_xp2_familiar
FamiliarIsFireMephit – inc_xp2_familiar
FamiliarIsHawk – inc_xp2_familiar
FamiliarIsHellHound – inc_xp2_familiar
FamiliarIsIceMephit – inc_xp2_familiar
FamiliarIsImp – inc_xp2_familiar
FamiliarIsPanther – inc_xp2_familiar
FamiliarIsPixie – inc_xp2_familiar
FamiliarIsPseudodragon – inc_xp2_familiar
FamiliarIsRat – inc_xp2_familiar
FamiliarIsRaven – inc_xp2_familiar
FamiliarIsSpider – inc_xp2_familiar
FamiliarIsWolf – inc_xp2_familiar

FindDestinationByTag – ginc_actions
FindEffectSpellId – nwn2_inc_metmag
FindListElementIndex – x0_i0_stringlib
FindMundaneIndexTag – ginc_crafting
FindSingleRangedTarget – x0_i0_enemy
FireAndForgetConversation – ginc_cutscene
FireHenchman – x0_i0_henchman
FireInterjection – x2_inc_banter
ForceExit – ginc_misc
ForceIPCleanerCleanup – ginc_cutscene
ForceIPCleanerCleanupForConversation – ginc_cutscene
ForceRestParty – ginc_companion
ForceResumeWWP – x0_i0_walkway
FormatHeaderRow – ginc_crafting
FormatIndexHeaderRow – ginc_crafting
FormatIndexRecipeRow – ginc_crafting
FormatRecipeRow – ginc_crafting
FormListElement – x0_i0_stringlib
FreezeAllAssociates – ginc_cutscene
FreezeAssociate – ginc_cutscene
FriendCheck – x0_i0_common

GatherPartyTransition – ginc_transition
GenerateUniqueSpellDCString – nwn2_inc_metmag
genericAttemptHarmful – x0_i0_talent
genericAttemptHarmfulRanged – x0_i0_talent
genericDoHarmfulRangedAttack – x0_i0_talent
Get2DAInt – ginc_2da
Get2DAStringOrDefault – ginc_2da
GetAbleToAutoSave – ginc_autosave
GetActiveCutsceneNum – x2_inc_cutscene
GetAheadLeftLocation – x0_i0_position
GetAheadLocation – x0_i0_position
GetAlchemyRecipeVar – ginc_crafting
GetAheadRightLocation – x0_i0_position
GetAmbientBusy – x2_am_inc
GetAngle – x0_i0_position
GetAngleBetweenLocations – x0_i0_position
GetAngleBetweenObjects – x0_i0_position
GetAnimationCondition – x0_i0_anims
GetAntiMagicRayMakesSense – x2_inc_beholder
GetAnyPCBeing – ginc_misc
GetAreAllEncodedEffectsAnUpgrade – ginc_crafting
GetAssociateHealMaster – x0_i0_assoc
GetAssociateState – x0_i0_assoc, x0_inc_states
GetAssociateStartLocation – x0_i0_assoc
GetAutoSaveTimeHash – ginc_autosave

122

Function Index.

GetBaddiesVar – ginc_baddie_stream
GetBeenHired – nw_i0_henchman
GetBehaviorState – x0_i0_behavior
GetBehind – nw_i0_assoc
GetBehindLocation – x0_i0_position
GetBestAOEBehavior – x2_i0_spells
GetBestEldritchAOETarget – nwn2_inc_talent
GetBestEldritchBlastFeat – nwn2_inc_talent
GetBestEldritchShape – nwn2_inc_talent
GetBestInvocationEssenceMetamagic – nwn2_inc_talent
GetBluntWeapon – x2_i0_spells
GetBMAFormationStartPosition – ginc_group
GetBMALocation – ginc_group
GetBooleanValue – x0_i0_common
GetCached2DAIndex – ginc_2da
GetCached2DAEntry – ginc_2da
GetCacheVarName – ginc_2da
GetCampaignBooleanValue – x0_i0_common
GetCampaignDBInt – x0_i0_campaign
GetCampaignDBFloat – x0_i0_campaign
GetCampaignDBLocation – x0_i0_campaign
GetCampaignDBName – x0_i0_campaign
GetCampaignDBString – x0_i0_campaign
GetCampaignDBVector – x0_i0_campaign
GetCanBardSing – nwn2_inc_metmag
GetCanCastHealingSpells – nw_i0_plot
GetCanLevelUp – nw_i0_henchman, x0_i0_henchman
GetCappedCasterLevel – x0_i0_spells
GetCasterAbilityModifier – x0_i0_spells
GetChangedPosition – x0_i0_position
GetChangeInX – x0_i0_position
GetChangeInY – x0_i0_position
GetChapter – nw_i0_henchman, x0_i0_common
GetCharacterLevel – nw_i0_generic
GetCharisma – nw_i0_plot
GetClassSpellLevelColumn – c2_inc_craft
GetClockDisplay – ginc_time
GetClockDisplayDate – ginc_time
GetClockDisplayTime – ginc_time
GetCombatCondition – x0_i0_combat
GetCombatDifficulty – x0_inc_generic
GetCrafting2DARecipeMatch – ginc_crafting
GetCraftingIntData – ginc_crafting
GetCraftingStringData – ginc_crafting
GetCreatureFlag – x2_inc_switches
GetCreatureHomeWaypoint – x0_i0_anims
GetCreatureOverrideAIScriptTarget – x2_inc_switches

GetCreatureTalent – x0_inc_generic
GetCreatureTalentBestStd – x0_inc_generic
GetCreatureTalentRandomStd – x0_inc_generic
GetCRMax – x0_inc_generic
GetCureDamageTotal – nw_i0_spells
GetCurrentCTimeDate – ginc_time
GetCurrentFriend – x0_i0_anims
GetCurrentInteractionTarget – x0_i0_anims
GetCurrentMaster – x0_i0_assoc
GetCurrentNegativeConditions – x0_i0_talent
GetCurrentTimeHash – ginc_autosave
GetCurrentWaypoint – x0_i0_walkway
GetCustomLeftDirection – x0_i0_position
GetCustomRightDirection – x0_i0_position
GetDayNightSwitch – x0_i0_walkway
GetDelayedSpellInfoSaveDC – nwn2_inc_metmag
GetDidDie – nw_i0_henchman, x0_i0_henchman
GetDidPersuade – x0_i0_common
GetDidQuit – x0_i0_henchman
GetDistillationRecipeVar – ginc_crafting
GetDoneFlag – ginc_vars
GetDoorFlag – x2_inc_switches
GetDurationType – ginc_param_const
GetEldritchBlastDmg – nw_i0_invocatns
GetEldritchBlastLevel – nw_i0_invocatns
GetEncodedEffectItemProperty – ginc_crafting
GetEpicSpellSaveDC – x2_i0_spells
GetEventPostfix – x2_inc_switches
GetEventRouter – x0_i0_common
GetEventRouterTag – x0_i0_common
GetEventsClearedFlag – ginc_event_handlers
GetFarLeftDirection – x0_i0_position
GetFarRightDirection – x0_i0_position
GetFeatImmunityType – x0_inc_generic
GetFirstAlpha – x0_i0_stringlib
GetFirstBeamTarget – ginc_reflection
GetFirstInGroup – ginc_group
GetFirstPCInFaction – ginc_debug
GetFirstTalentTarget – x0_i0_talent
GetFirstValidInGroupFromCurrent – ginc_group
GetFlankingLeftLocation – x0_i0_position
GetFlankingRightLocation – x0_i0_position
GetFleeToExit – nw_i0_generic
GetFloatParam – ginc_param_const
GetFollowDistance – x0_i0_assoc
GetFormerMaster – nw_i0_henchman
GetForwardFlankingLeftLocation – x0_i0_position

123

Function Index.

GetForwardFlankingRightLocation – x0_i0_position
GetFRDayName – ginc_time
GetFRDisplayDate – ginc_time
GetFRDisplayTime – ginc_time
GetFriendly – x0_i0_common
GetFRMonthName – ginc_time
GetFRSeason – ginc_time
GetFRSeasonName – ginc_time
GetFRYearName – ginc_time
GetGlobalArrayInt – ginc_vars
GetGlobalArrayString – ginc_vars
GetGlobalIntAsFloat – ginc_vars
GetGlobalObject – ginc_vars
GetGlobalVarRecipeMatch – ginc_crafting
GetGoodEvilActAdjustment – ginc_alignment
GetGreetingVar – nw_i0_henchman
GetGroupFloat – ginc_group
GetGroupInt – ginc_group
GetGroupName – ginc_group
GetGroupNumKilled – ginc_group
GetGroupObject – ginc_group
GetGroupString – ginc_group
GetHalfLeftDirection – x0_i0_position
GetHalfRightDirection – x0_i0_position
GetHasAdvice – x0_i0_common
GetHasEffect – x0_i0_match
GetHasEffectType – ginc_effect
GetHasInterjection – x0_i0_common
GetHasMatchingEffect – nwn2_inc_metmag
GetHasMaxWaitPassed – x0_i0_henchman
GetHasMet – x0_i0_henchman
GetHasNegativeCondition – x0_i0_talent
GetHasPlayerQueuedAction – ginc_companion
GetHasUsedDeck – x0_i0_deckmany
GetHealthPercent – ginc_ai
GetHenchmanByTag – ginc_companion
GetHexStringDigitValue – ginc_math
GetHuddleLocation – ginc_group
GetInfluence – ginc_companion
GetInfluenceVarName – ginc_param_const
GetIntParam – ginc_param_const
GetIntelligence – nw_i0_plot
GetIntInRange – x0_i0_spells
GetInTransition – x2_am_inc
GetInventoryRecipeMatch – ginc_crafting
GetInvocationEssenceByIndex – nwn2_inc_talent
GetInvocationSpellFromMetamagic – nwn2_inc_talent

GetIsAIType – ginc_ai
GetIsAlwaysKeptItemProperty – ginc_crafting
GetIsArmorOrShield – ginc_item
GetIsBusyWithAnimation – x0_i0_anims
GetIsChaotic – ginc_alignment
GetIsCombatCutsceneLocked – ginc_cutscene
GetIsCreatureSlot – ginc_item
GetIsCutscenePending – ginc_cutscene
GetIsDamagerABetterTarget – x0_inc_henai
GetIsDeathPopUpDisplayed – ginc_death
GetIsEncodedEffectAnUpgrade – ginc_crafting
GetIsEquippable – ginc_item
GetIsEvil – ginc_alignment
GetIsFactionInCombat – ginc_death
GetIsFactionMemberInConversation – kinc_spirit_eater
GetIsFactionValid – ginc_death
GetIsFighting – x0_inc_generic
GetIsFocused – ginc_behavior
GetIsFollower – x0_i0_henchman
GetIsGood – ginc_alignment
GetIsGroupDominated – ginc_group
GetIsGroupValid – ginc_group
GetIsHealingRelatedSpell – x2_i0_spells
GetIsHenchman – ginc_henchman
GetIsHenchmanDying – x0_i0_henchman
GetIsHighestPriorityNPCinParty – ginc_trigger
GetIsHired – x0_i0_henchman
GetIsIgnoreSubtypeItemProperty – ginc_crafting
GetIsInCutscene – nw_i0_generic
GetIsInList – x0_i0_stringlib
GetIsItemPossessedByParty – x0_i0_partywide
GetIsObjectValidSongTarget – nwn2_inc_metmag
GetIsInRoster – ginc_companion
GetIsIPSConversationPending – ginc_ipspeaker
GetIsIPSConversible – ginc_ipspeaker
GetIsIPSLocked – ginc_ipspeaker
GetIsItemCategory – ginc_item
GetIsItemEquipped – ginc_item
GetIsItemOfBaseTypes – ginc_crafting
GetIsItemPropertyAnUpgrade – ginc_crafting
GetIsJournalQuestAssigned – ginc_journal
GetIsLawful – ginc_alignment
GetIsLegalItemProp – ginc_2da
GetIsMagicalItem – x2_i0_spells
GetIsMagicStatBonus – x2_i0_spells
GetIsMeleeAttacker – x0_i0_enemy
GetIsMiscEquippable – ginc_item

124

Function Index.

GetIsObjectInParty – ginc_companion
GetIsObjectPossessible – ginc_death
GetIsOkayToCastSpell – ginc_behavior
GetIsOkayToDoHenchmenCombatRound – ginc_behavior
GetIsPartyInConversation – ginc_cutscene
GetIsPartyMember – ginc_death
GetIsPartyPossessible – ginc_death
GetIsPCHost – ginc_death
GetIsPlayerCharacter – nw_i0_plot
GetIsPosted – x0_i0_walkway
GetIsRangedAttacker – x0_i0_enemy
GetIsRosterNameInParty – ginc_companion
GetIsSafeToWakeUp – ginc_death
GetIsSecretItemOpen – x0_i0_secret
GetIsSecretItemRevealed – x0_i0_secret
GetIsShield – ginc_item
GetIsSoul – kinc_spirit_eater
GetIsSpiritBarPaused – kinc_spirit_eater
GetIsSpiritEaterInitialized – kinc_spirit_eater
GetIsUndead – kinc_spirit_eater
GetIsValidRetaliationTarget – ginc_behavior
GetIsWeapon – ginc_item
GetIsWieldingRanged – x0_i0_enemy
GetItemCategory – ginc_item
GetItemFlag – x2_inc_switches
GetItemPossessedByParty – x0_i0_partywide
GetJob – x2_am_inc
GetJournalQuestEntry – ginc_journal
GetKilled – x0_i0_henchman
GetLastGenericSpellCast – x0_inc_generic
GetLastMaster – x0_i0_henchman
GetLastMelee – x0_i0_equip
GetLastRanged – x0_i0_equip
GetLawChaosActAdjustment – ginc_alignment
GetLeftDirection – x0_i0_position
GetLeftLocation – x0_i0_position
GetLeisure – x2_am_inc
GetLineLocation – ginc_group
GetLocalIntState – ginc_math
GetLockedObject – nw_i0_generic
GetMagicalRecipeVar – ginc_crafting
GetMartialClass – x2_inc_plot
GetMatchCompatibility – x0_i0_match
GetMatchesAffectedItems – ginc_crafting
GetMeleeWeapon – x2_i0_spells
GetMinutesPerHour – ginc_time
GetModeActive – x0_i0_modes

GetModuleOverrideSpellscript – x2_inc_switches
GetModuleOverrideSpellScriptFinished – x2_inc_switches
GetModuleSwitchValue – x2_inc_switches
GetMostDangerousClass – x0_i0_enemy
GetMundaneRecipeVar – ginc_crafting
GetMyArea – nw_i0_henchman, x0_i0_common
GetMyMaster – nw_i0_plot
GetNameValuePairStruct – ginc_param_const
GetNearbyLocation – ginc_math
GetNearestCorpse – x0_i0_corpses
GetNearestDiagonalFacing – ginc_reflection
GetNearestEnemy – x0_i0_enemy
GetNearestNonEnemy – x0_i0_enemy
GetNearestPC – nw_i0_plot
GetNearestPerceivedEnemy – x0_i0_enemy
GetNearestSeenEnemy – x0_i0_enemy
GetNearestSeenFriend – x0_i0_enemy
GetNearestSeenOrHeardEnemy – x0_i0_enemy
GetNearestWalkWayPoint – x0_i0_walkway
GetNeutralAdjustment – ginc_alignment
GetNextBeamTarget – ginc_reflection
GetNextInGroup – ginc_group
GetNextTalentTarget – x0_i0_talent
GetNextToken – x0_i0_stringlib
GetNextWalkWayPoint – x0_i0_walkway
GetNextWaypoint – x0_i0_walkway
GetNPCJustResurrected – x0_i0_npckilled
GetNPCKilled – x0_i0_npckilled
GetNPCResurrected – x0_i0_npckilled
GetNPCWarningStatus – nw_i0_generic
GetNumberDeckDraws – x0_i0_deckmany
GetNumberOfMeleeAttackers – x0_i0_enemy
GetNumberOfObjects – ginc_object
GetNumberOfObjectsInArea – ginc_object
GetNumberOfRangedAttackers – x0_i0_enemy
GetNumberPartyMembers – x0_i0_partywide
GetNumberTokens – x0_i0_stringlib
GetNumHenchmen – ginc_henchman
GetNumHoursPassed – ginc_time
GetNumItems – nw_i0_plot
GetNumMeteorSwarmProjectilesToSpawnA – nwn2_inc_metmag
GetNumMeteorSwarmProjectilesToSpawnB – nwn2_inc_metmag
GetNumRosterMembersInParty – ginc_companion
GetNumScripts – ginc_event_handlers
GetNumWaypoints – x0_i0_walkway
GetNumWaypointsByPrefix – x0_i0_walkway
GetNVPValue – ginc_param_const

125

Function Index.

GetObjectTypes – ginc_param_const
GetOneLiner – x0_i0_common
GetOppositeDirection – x0_i0_position
GetOppositeLocation – x0_i0_position
GetPartyGroup – ginc_group
GetPartyMemberHasEquipped – ginc_item
GetPCAverageXP – ginc_misc
GetPCByUniqueID – kinc_spirit_eater
GetPCLeader – ginc_companion
GetPCTotalLevel – x2_inc_plot
GetPercentageHPLoss – x0_i0_assoc
GetPersuadeAttempt – x0_i0_common
GetPlayerHasHired – x0_i0_henchman
GetPlayerHasHiredInCampaign – x0_i0_henchman
GetPlayerQueuedTarget – ginc_companion
GetPLocalInt – nw_i0_plot
GetPlotItemTag – x0_i0_plotgiver
GetPointsInStage – kinc_spirit_eater
GetPreferredSpiritEater – kinc_spirit_eater
GetPreviousWaypoint – x0_i0_walkway
GetProjectileTrapOrigin – x0_i0_projtrap
GetQuestItemTag – x0_i0_plotgiver
GetQuestStatus – x0_i0_plotgiver
GetQuestTag – x0_i0_plotgiver
GetQuestVarname – x0_i0_plotgiver
GetQuestXPPercentRewarded – ginc_journal
GetRacialTypeCount – x0_i0_enemy
GetRandom2DVector – ginc_math
GetRandomDelay – nw_i0_spells
GetRandomFriend – x0_i0_anims
GetRandomHench – x2_inc_banter
GetRandomInvocationEssenceByLevel – nwn2_inc_talent
GetRandomLocation – x0_i0_position
GetRandomObjectByTag – x0_i0_anims
GetRandomObjectByType – x0_i0_anims
GetRandomObjectInArea – ginc_object
GetRandomQuasiFriend – x0_i0_anims
GetRandomStop – x0_i0_anims
GetRandomTextNumber – x2_inc_banter
GetRandomWaypoint – ginc_wp
GetRatioMissingOfStage – kinc_spirit_eater
GetRatioRemainingOfStage – kinc_spirit_eater
GetRayTargets – x2_inc_beholder
GetReady – x2_am_inc
GetRecipeIntElement – ginc_crafting
GetRecipeMatch – ginc_crafting
GetRecipeVar – ginc_crafting

GetRectangleLocation – ginc_group
GetRemovalSpell – x0_i0_match
GetRespawnLocation – x0_i0_common
GetRestMessageStrRef – ginc_restsys
GetResurrected – x0_i0_henchman
GetRewardItemTag – x0_i0_plotgiver
GetRightDirection – x0_i0_position
GetRightHandWeapon – x2_inc_ws_smith
GetRightLocation – x0_i0_position
GetRowIndexes – ginc_crafting
GetScaledCastingMagic – nw_i0_generic
GetScaledDuration – nw_i0_spells
GetScaledEffect – nw_i0_spells
GetSecretItemRevealed – x0_i0_secret
GetShift – x1_inc_cutscene, x2_inc_cutscene
GetSizeModifier – x0_i0_spells
GetSkillConstant – ginc_param_const
GetSlashingWeapon – x2_i0_spells
GetSlotOfEquippedItem – ginc_item
GetSortedItemList – ginc_crafting
GetSoundObjectByTag – ginc_param_const
GetSpawnInCondition – x0_i0_spawncond
GetSpecialAreaForDeckCard – x0_i0_deckmany
GetSpellBreachProtection – nw_i0_spells
GetSpellEffectDelay – nw_i0_spells
GetSpellImmunityType – x0_inc_generic
GetSpellLevelForClass – c2_inc_craft
GetSpiritBarScreenName – kinc_spirit_eater
GetSpiritBarXMLFileName – kinc_spirit_eater
GetSpiritEater – kinc_spirit_eater
GetSpiritEaterCorruption – kinc_spirit_eater
GetSpiritEaterPoints – kinc_spirit_eater
GetSpiritEaterStage – kinc_spirit_eater
GetSpiritEaterStageMaximumPoints – kinc_spirit_eater
GetSpiritEaterStageMinimumPoints – kinc_spirit_eater
GetStandardFaction – ginc_param_const
GetState – ginc_math
GetStepLeftLocation – x0_i0_position
GetStepRightLocation – x0_i0_position
GetStoryVar – nw_i0_henchman
GetStringPad – x0_i0_stringlib
GetStringParam – ginc_param_const
GetStringPrefix – ginc_vars
GetStringSuffix – ginc_vars
GetStringTokenizer -- x0_i0_stringlib
GetSymbolUniqueID – ginc_symbol_spells
GetTagNoPrefix – x0_i0_common

126

Function Index.

GetTarget – ginc_param_const
GetThreaten – x0_i0_common
GetTimeHash – ginc_autosave, ginc_time
GetTimeHashDifference – ginc_autosave
GetToFacing – ginc_reflection
GetTokenByPosition – x0_i0_stringlib
GetTrapConstant – ginc_symbol_spells
GetTriggerTarget – ginc_trigger
GetUniqueIDofPC – kinc_spirit_eater
GetUserDefinedItemEventNumber – x2_inc_switches
GetUserDefinedItemEventScriptName – x2_inc_switches
GetVarNameForDirection – ginc_reflection
GetWalkCondition – x0_i0_walkway
GetWarlockInvocationTalent – nwn2_inc_talent
GetWaypointByNum – x0_i0_walkway
GetWaypointRangeString – ginc_wp
GetWaypointString – ginc_wp
GetWaypointSuffix – x0_i0_walkway
GetWhoShouldBeSpiritEater – kinc_spirit_eater
GetWisdom – nw_i0_plot
GetWorkingForPlayer – nw_i0_henchman, x0_i0_henchman
GetWorldMapLocked – ginc_worldmap
GetWPLocation – ginc_group
GetWPPrefix – x0_i0_walkway
GetWPTag – x0_i0_walkway
GetWWPController – x0_i0_walkway
GiveAllEquippedItems – ginc_item
GiveAllInventory – ginc_item
GiveChapterRewardItem – nw_i0_henchman
GiveEquippedItem – ginc_item
GiveEverything – ginc_item
GiveGoldToAll – x0_i0_partywide
GiveGoldToAllEqually – x0_i0_partywide
GiveNumItems – nw_i0_plot
GivePersonalItem – nw_i0_henchman
GiveQuestItem – x0_i0_plotgiver
GiveRewardItem – x0_i0_plotgiver
GiveXPToAll – x0_i0_partywide
GiveXPToAllEqually – x0_i0_partywide
GoodEvilAxisAdjustment – ginc_alignment
GoToRandomPersonAndInit – x2_am_inc
gplotAppraiseOpenStore – nw_i0_plot
gplotAppraiseFavOpenStore – nw_i0_plot
GroupActionCastFakeSpellAtObject – ginc_group
GroupActionForceExit – ginc_group
GroupActionForceFollowObject – ginc_group
GroupActionMoveAwayFromObject – ginc_group

GroupAttackGroup – ginc_group
GroupActionMoveToObject – ginc_group
GroupActionOrientToTag – ginc_group
GroupActionWait – ginc_group
GroupAddEncounter – ginc_group
GroupAddFaction – ginc_group
GroupAddMember – ginc_group
GroupAddNearestTag – ginc_group
GroupAddTag – ginc_group
GroupAttack – ginc_group
GroupChangeFaction – ginc_group
GroupChangeToStandardFaction – ginc_group
GroupClearAllActions – ginc_group
GroupDeleteObjectIndex – ginc_group
GroupDetermineCombatRound – ginc_group
GroupFleeToExit – ginc_group
GroupForceMoveToLocation – ginc_group
GroupGetCurrentIndex – ginc_group
GroupGetCurrentObject – ginc_group
GroupGetNumObjects – ginc_group
GroupGetNumValidObjects – ginc_group
GroupGetObjectIndex – ginc_group
GroupGoHostile – ginc_group
GroupIncrementIndex – ginc_group
GroupJumpToWP – ginc_group
GroupMoveToFormationLocation – ginc_group
GroupMoveToObject – ginc_group
GroupMoveToWP – ginc_group
GroupOnDeathBeginConversation – ginc_group
GroupOnDeathSetLocalFloat – ginc_group
GroupOnDeathSetLocalInt – ginc_group
GroupOnDeathSetLocalString – ginc_group
GroupOnDeathSetJournalEntry – ginc_group
GroupOnDeathExecuteCustomScript – ginc_group
GroupPlayAnimation – ginc_group
GroupResurrect – ginc_group
GroupSetBMAFormation – ginc_group
GroupSetCircleFormation – ginc_group
GroupSetCurrentIndex – ginc_group
GroupSetFacingPoint – ginc_group
GroupSetImmortal – ginc_group
GroupSetIsDestroyable – ginc_group
GroupSetLineFormation – ginc_group
GroupSetLocalFloat – ginc_group
GroupSetLocalInt – ginc_group
GroupSetLocalObject – ginc_group
GroupSetLocalString – ginc_group

127

Function Index.

GroupSetNoFormation – ginc_group
GroupSetNoise – ginc_group
GroupSetNumObjects – ginc_group
GroupSetObjectIndex – ginc_group
GroupSetPlotFlag – ginc_group
GroupSetRectangleFormation – ginc_group
GroupSetScriptHidden – ginc_group
GroupSetSemicircleFormation – ginc_group
GroupSetSpawnInCondition – ginc_group
GroupSignalEvent – ginc_group
GroupSpawnAtLocation – ginc_group
GroupSpawnAtWaypoint – ginc_group
GroupStartFollowLeader – ginc_group
GroupStopFollowLeader – ginc_group
GroupSurrenderToEnemies – ginc_group
GroupWander – ginc_group
GZGetHighestSpellcastingClassLevel – x0_i0_spells
GZGetDelayedSpellEffectsExpired – x2_i0_spells
GZRemoveSpellEffects – x2_i0_spells

HandlePlayerControlChanged – ginc_companion
HasChapterQuestItem – nw_i0_henchman
HasChapterRewardItem – nw_i0_henchman
HasGold – nw_i0_tool
HasHourChanged – ginc_time
HasItem – nw_i0_plot, nw_i0_tool
HasItemByTag – x0_i0_common
HasMoreTokens – x0_i0_stringlib
HasPersonalItem – nw_i0_henchman
HasPlotItem – x0_i0_plotgiver
HasQuestItem – x0_i0_plotgiver
HasRewardItem – x0_i0_plotgiver
HasSizeIncreasingSpellEffect – nwn2_inc_metmag
HealHarmFaction – nwn2_inc_metmag
HealHarmNearby – nwn2_inc_metmag
HealHarmObject – nwn2_inc_metmag
HealHarmTarget – nwn2_inc_metmag
HenchmenCombatRound – x0_inc_henai
HenchmanMoveable – x2_inc_banter
HexStringToInt – ginc_math
HideDeathScreen – ginc_death
HideHiddenDeathScreen – ginc_death
HideHostileCreatures – ginc_cutscene
HidePartySelect – ginc_gui
HireHenchman – x0_i0_henchman

ICraftCheckCraftWand – c2_inc_craft

IdentifyEquippedItems – ginc_item
IdentifyInventory – ginc_item
IgnoreTargetRulesAction – nw_i0_spells
IgnoreTargetRulesActionCastSpellAtLocationArea – nw_i0_spells
IgnoreTargetRulesActionCastSpellAtObjectArea – nw_i0_spells
IgnoreTargetRulesEnqueueTarget – nw_i0_spells
IgnoreTargetRulesGetFirstIndex – nw_i0_spells
IgnoreTargetRulesRemoveEntry – nw_i0_spells
IncGroupNumKilled – ginc_group
IncrementBaddiesVar – ginc_baddie_stream
IncrementLeisure – x2_am_inc
IncrementGlobalInt – ginc_actions
INF_AreaCleanup – x0_i0_infinite
INF_AreaSetup – x0_i0_infinite
INF_CleanupPC – x0_i0_infinite
INF_CreateRandomEncounter – x0_i0_infdesert
INF_CreateRandomPlaceables – x0_i0_infdesert
INF_CleanupTransition – x0_i0_infinite
INF_DoFirstTransition – x0_i0_infinite
INF_DoTransition – x0_i0_infinite
INF_IncrNumberTransitionsPassed – x0_i0_infinite
INF_GetAreaFromPool – x0_i0_infinite
INF_GetCurrentStartingPoint – x0_i0_infinite
INF_GetEntryMessage – x0_i0_infdesert
INF_GetFixedLocation – x0_i0_infinite
INF_GetHasCompleted – x0_i0_infinite
INF_GetHasEntered – x0_i0_infinite
INF_GetHasFinishedRunLength – x0_i0_infinite
INF_GetIsInInfiniteSpace – x0_i0_infinite
INF_GetIsInPool – x0_i0_infinite
INF_GetIsPartyLeaderInRange – x0_i0_infinite
INF_GetNeedKeyMessage – x0_i0_infdesert
INF_GetNoStartMessage – x0_i0_infdesert
INF_GetNumberTransitionsPassed – x0_i0_infinite
INF_GetPartyHasRewardKey – x0_i0_infinite
INF_GetPoolEmptyMessage – x0_i0_infdesert
INF_GetReachRewardMessage – x0_i0_infdesert
INF_GetReachStartMessage – x0_i0_infdesert
INF_GetReentryMessage – x0_i0_infdesert
INF_GetReturnToRewardMessage – x0_i0_infdesert
INF_GetReturnToStartMessage – x0_i0_infdesert
INF_GetReturnTransition – x0_i0_infinite
INF_GetRewardArea – x0_i0_infinite
INF_GetRewardKey – x0_i0_infinite
INF_GetRunLength – x0_i0_infinite
INF_ItemCleanup – x0_i0_infinite
INF_SendMessage – x0_i0_infinite

128

Function Index.

INF_SetCurrentStartingPoint – x0_i0_infinite
INF_SetHasEntered – x0_i0_infinite
INF_SetHasCompleted – x0_i0_infinite
INF_SetNumberTransitionsPassed – x0_i0_infinite
INF_SetRunLength – x0_i0_infinite
INF_SetIsInPool – x0_i0_infinite
INF_SetFixedLocation – x0_i0_infinite
INF_SetupPC – x0_i0_infinite
INF_TransportToNewArea – x0_i0_infinite
INF_TransportToPartyLeader – x0_i0_infinite
INF_TransportToStartingPoint – x0_i0_infinite
InitiateConversation – ginc_wp
InitializeSeed – nw_i0_generic
InitializeSpiritEater – kinc_spirit_eater
InitWWPController – x0_i0_walkway
InsertIntoGroup – ginc_group
InterpolatedRotation – ginc_reflection
InvisibleTrue – x0_inc_generic
IPDyeArmor – x2_inc_itemprop
IPGetDamagePowerConstantFromNumber – x2_inc_itemprop
IPGetDamageBonusConstantFromNumber – x2_inc_itemprop
IPGetHasItemPropertyOnCharacter – x2_inc_itemprop
IPGetIPConstCastSpellFromSpellID – x2_inc_itemprop
IPGetIPWorkContainer – x2_inc_itemprop
IPGetIsBludgeoningWeapon – x2_inc_itemprop
IPGetIsIntelligentWeapon – x2_inc_itemprop
IPGetIsItemEquipable – x2_inc_itemprop
IPGetIsMeleeWeapon – x2_inc_itemprop
IPGetIsProjectile – x2_inc_itemprop
IPGetIsRangedWeapon – x2_inc_itemprop
IPGetItemHasItemOnHitPropertySubType – x2_inc_itemprop
IPGetItemHasProperty – x2_inc_itemprop
IPGetItemPropertyByID – x2_inc_itemprop
IPGetItemSequencerProperty – x2_inc_itemprop
IPGetModifiedArmor – x2_inc_itemprop
IPGetNumberOfAppearances – x2_inc_itemprop
IPGetNumberOfItemProperties – x2_inc_itemprop
IPGetNextArmorAppearanceType – x2_inc_itemprop
IPGetPrevArmorAppearanceType – x2_inc_itemprop
IPGetRandomArmorAppearanceType – x2_inc_itemprop
IPGetWeaponEnhancementBonus – x2_inc_itemprop
IPRemoveMatchingItemProperties – x2_inc_itemprop
IPRemoveAllItemProperties – x2_inc_itemprop
IPSafeAddItemProperty – x2_inc_itemprop
IPSetWeaponEnhancementBonus – x2_inc_itemprop
IPUpgradeWeaponEnhancementBonus – x2_inc_itemprop
IPWildShapeCopyItemProperties – x2_inc_itemprop

IsAlchemyWorkbench – ginc_crafting
IsAtJob – x2_am_inc
IsBusy – ginc_behavior, nw_i0_assoc
IsCreatureInView – x0_i0_position
IsCurrentDayInRange – ginc_time
IsCurrentHourInRange – ginc_time
IsCurrentMonthInRange – ginc_time
IsCurrentYearInRange – ginc_time
IsDirectionWithinTolerance – x0_i0_position
IsFacingWithin – x0_i0_position
IsFloatNearInt – ginc_math
IsGroupEmpty – ginc_group
IsHenchman – ginc_companion
IsHenchmanByTag – ginc_companion
IsInParty – ginc_companion
IsIntInRange – ginc_math
IsItemAcquiredByPartyMember – ginc_item_script
IsItemMarkedAsDone – ginc_item_script
IsMarkedAsDone – ginc_vars
IsOkToAdd – x2_inc_ws_smith
IsOkToWalkWayPoints – x0_i0_walkway
IsOnSpellList – c2_inc_craft
IsOutOfAmmo – x0_i0_equip
IsParameterConstant – ginc_param_const
IsPartyGathered – ginc_transition
IsPlaceableInView – x0_i0_position
IsRecall – nw_i0_plot
IsSmithWorkbench – ginc_crafting
IsSpellEffectiveAgainstTarget – x0_inc_generic
IsTargetImmuneToSpell – x0_inc_generic
IsTargetImmuneToFeat – x0_inc_generic
IsTargetValidForDelayedSpellEffect – nwn2_inc_metmag
IsWorkbench – ginc_crafting
IWClearConversationConditions – x2_int_intweapon
IWCreateIntelligentWeapon – x2_int_intweapon
IWEndIntelligentWeaponConversation – x2_int_intweapon
IWGetConversationCondition – x2_int_intweapon
IWGetIntelligentWeaponEquipped – x2_int_intweapon
IWGetIsHotUChapter1 – x2_int_intweapon
IWGetIsHotUChapter2 – x2_int_intweapon
IWGetIsHotUChapter3 – x2_int_intweapon
IWGetIsInIntelligentWeaponConversation – x2_int_intweapon
IWGetQuestionAsked – x2_int_intweapon
IWGetStaticEnhancementBonus – x2_int_intweapon
IWGetTalkedTo – x2_int_intweapon
IWGetWeaponDialogName – x2_int_intweapon
IWPlayRandomEquipComment – x2_int_intweapon

129

Function Index.

IWPlayRandomHitQuote – x2_int_intweapon
IWPlayRandomUnequipComment – x2_int_intweapon
IWSpawnInWeaponCreature – x2_int_intweapon
IWSetConversationCondition – x2_int_intweapon
IWSetCreatureHadOneLiner – x2_int_intweapon
IWSetEnhancementAndDrainLevel – x2_int_intweapon
IWSetQuestionAsked – x2_int_intweapon
IWSetTalkedTo – x2_int_intweapon
IWStartIntelligentWeaponConversation – x2_int_intweapon
IWSWrapper – x2_int_intweapon

JobBarPatron – x2_am_inc
JumpPartyToSpeaker – ginc_cutscene

KeepDead – x0_i0_henchman
KillAndExplode – x0_i0_corpses
KillAndReplaceLootable – x0_i0_corpses
KillAndReplaceDecay – x0_i0_corpses
KillAndReplaceRaiseable – x0_i0_corpses
KillAndReplaceSelectable – x0_i0_corpses
KillAndReplaceDecorative – x0_i0_corpses
KnockOutCreature – ginc_death

LawChaosAxisAdjustment – ginc_alignment
LevelHenchmanUpTo – x0_i0_henchman
LevelUpXP1Henchman – x0_i0_henchman
ListenToTalker – ginc_wp
ListMembersOfGroup – ginc_group
LoadActionModes – ginc_cutscene
LoadPartyActionModes – ginc_cutscene
LoadPartyAIState – ginc_cutscene
LocationToString – x0_i0_position
LookInCrate – ginc_wp
LookUpWalkWayPoints – x0_i0_walkway
LookUpWalkWayPointsSet – x0_i0_walkway
LootInventory – x0_i0_corpses
LootInventorySlots – x0_i0_corpses

MakeConversable – ginc_cutscene
MarkAsDone – ginc_vars
MarkAsUndone – ginc_vars
MatchAreaOfEffectSpell – x0_i0_match
MakeBaseItemList – ginc_crafting
MatchCombatProtections – x0_i0_match
MatchCrossbow – x0_i0_match
MatchDoIHaveAMindAffectingSpellOnMe – x0_i0_match
MatchDoubleHandedWeapon – x0_i0_match

MatchElementalProtections – x0_i0_match
MakeEncodedEffect – ginc_crafting
MatchHumanoidRacialType – x0_i0_match
MatchInflictTouchAttack – x0_i0_match
MakeItemUseableByClass – c2_inc_craft
MakeItemUseableByClassesWithSpellAccess – c2_inc_craft
MakeList – ginc_crafting
MatchMeleeWeapon – x0_i0_match
MatchMindAffectingSpells – x0_i0_match
MatchNonliving – x0_i0_match
MakeNonNegIntList – ginc_crafting
MatchPersonSpells – x0_i0_match
MatchNormalBow – x0_i0_match
MakeRepeatedItemList – ginc_crafting
MarkItemAsDone – ginc_item_script
MatchShield – x0_i0_match
MatchSingleHandedWeapon – x0_i0_match
MatchSpellProtections – x0_i0_match
MaxAB – ginc_baddie_stream
MaximizeOrEmpower – x0_i0_spells
MeanCheck – x0_i0_common
Message – ginc_debug
MessageLine – ginc_debug
ModifyGlobalInt – ginc_vars
ModifyLocalInt – ginc_vars
ModifyLocalIntOnFaction – ginc_vars
MoveAllAssociatesTo – x2_inc_plot
MoveToAndAttack – ginc_behavior
MoveToNewLocation – x0_i0_position
MoveToNextWaypoint – x0_i0_walkway
MutualGreeting – ginc_wp
MyGetCreatureTalent – nwn2_inc_talent
MyPrintString – x0_i0_debug
MyResistSpell – nw_i0_spells
MySavingThrow – nw_i0_spells

N2_GetNPCEasyMark – ginc_item
N2_AppraiseOpenStore – ginc_item
NewCTimeDate – ginc_time
newdebug – x0_i0_debug
NoInterrupt – ginc_actions
NoPlayerInArea – x2_am_inc
NormalizeCTimeDate – ginc_time
NotifyRegisteredObject – ginc_time
NotifyRegisteredObjects – ginc_time

oidCreateItemOnObject – ginc_item

130

Function Index.

OldFunctionMessage – ginc_debug
OpenAntiMagicEye – x2_inc_beholder
OpenNearestLock – nw_i0_assoc
OutputRecipeIndex – ginc_crafting
OutputRecipeSet – ginc_crafting
OutputRecipeType – ginc_crafting
OutputRecipes – ginc_crafting

PC – nw_i0_henchman
PCTriggeredOnce – ginc_misc
PersistentConversationAttempt – x0_i0_common
Petrify – x0_i0_petrify
PetrifyWood – x0_i0_petrify
PilferMagicCallback – nwn2_inc_metmag
PlaceCreatureAtTag – ginc_object
PlaceItemAtTag – ginc_object
PlaceObjectAtTag – ginc_object
PlacePlaceableAtTag – ginc_object
PlayCharacterTheme – nw_i0_plot
PlayDragonBattleCry – nw_i0_spells
PlayerControlPossessed – ginc_companion
PlayerControlUnpossessed – ginc_companion
PlayerSeen – x2_am_inc
PlayMobileAmbientAnimations – nw_i0_generic
PlayOldTheme – nw_i0_plot
PlayRandomImmobileAnimation – x2_am_inc
PlaySpeakSoundByStrRef – nw_i0_plot
plotCanRemoveXP – nw_i0_plot
PortalAllAnchorExists – x0_inc_portal
PortalAnchorExists – x0_inc_portal
PortalCreateAnchor – x0_inc_portal
PortalDeleteAnchor – x0_inc_portal
PortalGetAnchor – x0_inc_portal
PortalGetAnchorName – x0_inc_portal
PortalGetNextAnchor – x0_inc_portal
PortalHasGold – x0_inc_portal
PortalHasRogueStone – x0_inc_portal
PortalJumpAnchor – x0_inc_portal
PortalJumpHall – x0_inc_portal
PortalJumpToHero – x0_inc_portal
PortalJumpToPlayerDeath – x0_inc_portal
PortalNoAnchorExists – x0_inc_portal
PortalPlayerDied – x0_inc_portal
PortalSetupTokens – x0_inc_portal
PortalTakeGold – x0_inc_portal
PortalTakeRogueStone – x0_inc_portal
PostRespawnCleanup – x0_i0_henchman

PreRespawnSetup – x0_i0_henchman
PrettyDebug – ginc_debug
PrettyError – ginc_debug
PrettyMessage – ginc_debug
PrettyPostString – ginc_debug
PrintRosterList – ginc_companion, ginc_roster
PWGiveExperienceParty – nw_i0_plotwizard
PWSetMinLocalIntAndJournalForItemAcquired –

nw_i0_plotwizard
PWSetMinLocalIntAndJournalForOpenerParty –

nw_i0_plotwizard
PWSetMinLocalIntParty – nw_i0_plotwizard
PWSetMinLocalIntPartyPCSpeaker – nw_i0_plotwizard

QueueCombatCutsceneCleanUp – ginc_cutscene
QuitHenchman – x0_i0_henchman

RaiseCorpse – x0_i0_corpses
RaiseForRespawn – x0_i0_henchman
RandomDelta – ginc_math
RandomFarmAction – ginc_wp
RandomFloat – ginc_math
RandomFloatBetween – ginc_math
RandomIntBetween – ginc_math
RandomInteractionAnim – ginc_wp
RandomInteractionExchange – ginc_wp
RandomOnwardWaypoint – ginc_wp
RandomPauseAnim – ginc_wp
RandomSpawn – ginc_baddie_stream
RandomTalkAnim – ginc_wp
RandomVictoryAnim – ginc_wp
ReactToHarmfulSpell – ginc_behavior
ReduceSpiritEaterPointsByStageRatio – kinc_spirit_eater
ReflectBeam – ginc_reflection
RegisterForTimeEvent – ginc_time
RememberEquippedItem – ginc_item
RememberEquippedItems – ginc_item
RemoveAllFollowers – x0_i0_henchman
RemoveAmbientSleep – nw_i0_generic
RemoveBardSongSingingEffect – nwn2_inc_metmag
RemoveCommandable – x2_inc_cutscene
RemoveDeathScreens – ginc_death
RemoveDelayedSpellInfo – nwn2_inc_metmag
RemoveDominatedFromPCParty – ginc_transition
RemoveEffectCutsceneParalyze – ginc_cutscene
RemoveEffectOfType – x0_i0_petrify
RemoveEffects – nw_i0_plot

131

Function Index.

RemoveEffectsByType – ginc_effect
RemoveHenchmanByTag – ginc_companion
RemoveHenchmanFromCompanion – ginc_companion
RemoveHenchmanModifier – ginc_companion
RemoveHighlight – x0_i0_highlight
RemoveItem – ginc_item
RemoveItemFromParty – x0_i0_partywide
RemoveListElement – x0_i0_stringlib
RemoveMyself – ginc_actions
RemoveNVP – ginc_param_const
RemovePermanencySpells – nwn2_inc_metmag
RemoveProtections – nw_i0_spells
RemoveRosterMembersFromParty – ginc_companion
RemoveSEFFromWP – ginc_effect
RemoveSEFFromWPs – ginc_effect
RemoveSpecificEffect – nw_i0_spells
RemoveSpellEffects – nw_i0_spells
RemoveSpellEffectsFromCaster – nwn2_inc_metmag
RemoveSpiritEaterFeatList – kinc_spirit_eater
RemoveSpiritEaterStatus – kinc_spirit_eater
ReplaceAllSubStrings – x0_i0_stringlib
ReplaceSubString – x0_i0_stringlib
ReportEventHandlers – ginc_event_handlers
ReportPartyGather – ginc_transition
Request – x2_am_inc
ResetCutsceneInfo – ginc_cutscene
ResetGroup – ginc_group
ResetHenchmenState – x0_i0_assoc
ResetIPSpeaker – ginc_ipspeaker
ResetSecretItem – x0_i0_secret
RespawnCheck – x0_i0_henchman
RespawnHenchman – x0_i0_henchman
RespondToShout – nw_i0_generic
RetrieveCampaignHenchman – x0_i0_henchman
RetrieveHenchmanItems – x0_i0_henchman
RestoreAllHenchmen – x2_inc_globals
RestoreBattleMusicTrack – ginc_sound
RestoreEquippedItem – ginc_item
RestoreEquippedItems – ginc_item
RestoreEventHandlers – ginc_event_handlers
RestoreHenchmenVariables – x2_inc_globals
RestoreMusicTrack – ginc_sound
RetrieveCampaignDBObject – x0_i0_campaign
ResurrectCreature – ginc_death
ResurrectFaction – ginc_death
ReturnAttackBonus – x2_inc_ws_smith
ReturnEnhancementBonus – x2_inc_ws_smith

ReturnItemPropertyToUse – x2_inc_ws_smith
RevealSecretItem – x0_i0_secret
Reward_2daXP – nw_i0_plot
RewardCappedQuestXP – ginc_journal
RewardGP – nw_i0_plot
RewardPartyUniqueItem – ginc_journal
RewardPartyItem – ginc_journal
RewardPartyGold – ginc_journal
RewardPartyGP – nw_i0_tool
RewardPartyXP – ginc_journal, nw_i0_tool
RewardPartyQuestXP – ginc_journal
RewardPartyCappedQuestXP – ginc_journal
RewardXP – nw_i0_plot
RotatePlaceable – ginc_reflection
RunEssenceBrimstoneBlastImpact – nw_i0_invocatns
RunEssenceVitriolicBlastImpact – nw_i0_invocatns

SafeClearEventHandlers – ginc_event_handlers
SafeRestoreEventHandlers – ginc_event_handlers
SaveActionModes – ginc_cutscene
SaveBattleMusicTrack – ginc_sound
SaveDelayedSpellInfo – nwn2_inc_metmag
SaveEventHandlers – ginc_event_handlers
SaveMusicTrack – ginc_sound
SavePartyActionModes – ginc_cutscene
SavePartyAIState – ginc_cutscene
SaveRosterLoadModule – ginc_companion
ScaleInt – ginc_math
Search2DA – ginc_2da
Search2DA2Col – ginc_2da
SeenNodeVarName – x0_i0_seennode
SelectRandomWaypointFromString – ginc_wp
SendForHelp – x0_inc_henai
SetAllAssociatesFollow – ginc_companion
SetAllAssociatesState – ginc_companion
SetAllEventHandlers – ginc_event_handlers
SetAmbientBusy – x2_am_inc
SetAnimationCondition – x0_i0_anims
SetAssociateEventHandlers – ginc_event_handlers
SetAssociatesState – ginc_companion
SetAssociateStartLocation – x0_i0_assoc
SetAssociateState – x0_i0_assoc, x0_inc_states
SetBeenHired – nw_i0_henchman
SetBehaviorState – x0_i0_behavior
SetBooleanValue – x0_i0_common
SetCached2DAIndex – ginc_2da
SetCached2DAEntry – ginc_2da

132

Function Index.

SetCameraFacingPoint – ginc_cutscene
SetCameraFacingPointParty – ginc_cutscene
SetCampaignBooleanValue – x0_i0_common
SetCampaignDBString – x0_i0_campaign
SetCampaignDBInt – x0_i0_campaign
SetCampaignDBFloat – x0_i0_campaign
SetCampaignDBFloatOnAll – x0_i0_partywide
SetCampaignDBIntOnAll – x0_i0_partywide
SetCampaignDBLocation – x0_i0_campaign
SetCampaignDBLocationOnAll – x0_i0_partywide
StoreCampaignDBObjectOnAll – x0_i0_partywide
SetCampaignDBStringOnAll – x0_i0_partywide
SetCampaignDBVector – x0_i0_campaign
SetCampaignDBVectorOnAll – x0_i0_partywide
SetClockOnForPlayer – ginc_time
SetClockOnForAllPlayers – ginc_time
SetCombatCondition – x0_i0_combat
SetCombatCutsceneLocked – ginc_cutscene
SetCreatureFlag – x2_inc_switches
SetCreatureHomeWaypoint – x0_i0_anims
SetCreatureOverrideAIScript – x2_inc_switches
SetCreatureOverrideAIScriptFinished – x2_inc_switches
SetCTimeDate – ginc_time
SetCurrentFriend – x0_i0_anims
SetCurrentInteractionTarget – x0_i0_anims
SetCutsceneModeAllPCs – ginc_cutscene
SetCutsceneModeParty – ginc_cutscene
SetDidDie – nw_i0_henchman, x0_i0_henchman
SetDidPersuade – x0_i0_common
SetDidQuit – x0_i0_henchman
SetDoorFlag – x2_inc_switches
SetEnchantedItemName – ginc_crafting
SetEventsClearedFlag – ginc_event_handlers
SetExecutedScriptReturnValue – x2_inc_switches
SetFormerMaster – nw_i0_henchman
SetFriendly – x0_i0_common
SetGlobalArrayInt – ginc_vars
SetGlobalArrayString – ginc_vars
SetGlobalObject – ginc_vars
SetGreetingVar – nw_i0_henchman
SetGroupFloat – ginc_group
SetGroupInt – ginc_group
SetGroupObject – ginc_group
SetGroupString – ginc_group
SetHasAdvice – x0_i0_common
SetHasPlayerQueuedAction – ginc_companion
SetHasUsedDeck – x0_i0_deckmany

SetHenchmanDying – x0_i0_henchman
SetInfluence – ginc_companion
SetInterjection – x0_i0_common
SetInTransition – x2_am_inc
SetIPSConversationPending – ginc_ipspeaker
SetIPSLocked – ginc_ipspeaker
SetIsBusy – nw_i0_assoc
SetIsDeathPopUpDisplayed – ginc_death
SetIsEnemy – nw_i0_plot
SetIsFocused – ginc_behavior
SetIsSecretItemOpen – x0_i0_secret
SetItemFlag – x2_inc_switches
SetJob – x2_am_inc
SetKilled – x0_i0_henchman
SetLastGenericSpellCast – x0_inc_generic
SetLastMaster – x0_i0_henchman
SetListeningPatterns – x0_i0_spawncond
SetLocalFloatDefualt – ginc_reflection
SetLocalFloatOnAll – x0_i0_partywide
SetLocalIntDefualt – ginc_reflection
SetLocalIntOnAll – x0_i0_partywide
SetLocalIntState – ginc_math
SetLocalLocationOnAll – x0_i0_partywide
SetLocalObjectOnAll – x0_i0_partywide
SetLocalStringDefualt – ginc_reflection
SetLocalStringOnAll – x0_i0_partywide
SetModeActive – x0_i0_modes
SetModuleOverrideSpellscript – x2_inc_switches
SetModuleOverrideSpellScriptFinished – x2_inc_switches
SetModuleSwitch – x2_inc_switches
SetNextWaypoint – x0_i0_walkway
SetNPCJustResurrected – x0_i0_npckilled
SetNPCKilled – x0_i0_npckilled
SetNPCResurrected – x0_i0_npckilled
SetNPCWarningStatus – nw_i0_generic
SetNumberDeckDraws – x0_i0_deckmany
SetObjectIsDestroyable – x0_i0_corpses
SetOneLiner – x0_i0_common
SetOnQuest – x0_i0_plotgiver
SetPersuadeAttempt – x0_i0_common
SetPartyPlotFlag – ginc_cutscene
SetPlayerHasHired – x0_i0_henchman
SetPlayerHasHiredInCampaign – x0_i0_henchman
SetPlayerQueuedTarget – ginc_companion
SetPLocalInt – nw_i0_plot
SetPreferredSpiritEater – kinc_spirit_eater
SetQuestDone – x0_i0_plotgiver

133

Function Index.

SetRespawnLocation – x0_i0_common
SetRespawnLocationSpecific – x0_i0_common
SetRestOptionState – ginc_restsys
SetResurrected – x0_i0_henchman
SetSpawnInCondition – x0_i0_spawncond
SetSpawnInLocals – x0_i0_spawncond
SetSpiritEater – kinc_spirit_eater
SetSpiritEaterCorruption – kinc_spirit_eater
SetSpiritEaterStage – kinc_spirit_eater
SetSpiritEaterPoints – kinc_spirit_eater
SetState – ginc_math
SetStoryVar – nw_i0_henchman
SetSummonHelpIfAttacked – nw_i0_generic
SetThreaten – x0_i0_common
SetupCutsceneInfo – ginc_cutscene
SetUpSymbol – ginc_symbol_spells
SetUpTimeEvent – ginc_time
SetupWander – x2_inc_plot
SetUserDefinedItemEventNumber – x2_inc_switches
SetUserDefinedItemEventPrefix – x2_inc_switches
SetWaitTextStringRef – ginc_restsys
SetWalkCondition – x0_i0_walkway
SetWanderingMonster2DAFile – x2_inc_switches
SetWeaponToken – x2_inc_ws_smith
SetWorkingForPlayer – nw_i0_henchman
SetWorldMapLocked – ginc_worldmap
SetWWPController – x0_i0_walkway
ShifterDecrementGWildShapeSpellUsesLeft – x2_inc_shifter
ShifterGetSaveDC – x2_inc_shifter
ShifterMergeArmor – x2_inc_shifter
ShifterMergeItems – x2_inc_shifter
ShifterMergeWeapon – x2_inc_shifter
ShifterSetGWildshapeSpellLimits – x2_inc_shifter
ShortConversation – ginc_wp
ShortConvoIfOtherAvailable – ginc_wp
ShowDeathScreen – ginc_death
ShowEncounterMessage – ginc_worldmap
ShowHiddenDeathScreen – ginc_death
ShowHostileCreatures – ginc_cutscene
ShowLoadGame – ginc_gui
ShowPartySelect – ginc_gui
ShowProperDeathScreen – ginc_death
SilenceCheck – x0_inc_generic
SinglePartyTransition – ginc_transition
skillCTRAPGetHasComponent – x0_inc_skills
skillCTRAPTakeComponent – x0_inc_skills
skillCTRAPSetCurrentTrapView – x0_inc_skills

skillCTRAPGetCurrentTrapViewEquals – x0_inc_skills
skillCTRAPGetCurrentTrapView – x0_inc_skills
skillCTRAPCreateTrapKit – x0_inc_skills
Sort – x0_i0_stringlib
SpawnCreatureAtWP – ginc_object
SpawnCreaturesAtWPs – ginc_object
SpawnCreaturesInGroupAtWP – ginc_group
SpawnHenchman – nw_i0_henchman
SpawnObjectAtWP – ginc_object
SpawnObjectsAtWPs – ginc_object
SpawnPlaceableAtWP – ginc_object
SpawnPlaceablesAtWPs – ginc_object
SpeakQuickChat – nw_i0_assoc
SpellFilterHasImmunity – x0_inc_generic
SpecialTactics – x0_i0_combat
SpecialTacticsRanged – x0_i0_combat
SpecialTacticsAmbusher – x0_i0_combat
SpecialTacticsCowardly – x0_i0_combat
SpecialTacticsDefensive – x0_i0_combat
spellApplyMindBlank – x0_i0_spells
spellsDispelAoE – x0_i0_spells
spellsDispelMagic – x0_i0_spells
spellsGenericAreaOfEffect – x0_i0_spells
spellsHealOrHarmTarget – nw_i0_spells
spellsInflictTouchAttack – x0_i0_spells
spellsIsFlying – x0_i0_spells
spellsIsImmuneToPetrification – x0_i0_spells
spellsIsMindless – x0_i0_spells
spellsIsTarget – nw_i0_spells
spellsStinkingCloud – x0_i0_spells
SpiritBarPause – kinc_spirit_eater
SpiritBarPauseRequest – kinc_spirit_eater
SpiritEaterConversationPauseCheck – kinc_spirit_eater
SpiritEaterFeatAdd – kinc_spirit_eater
SpiritEaterPointsToStage – kinc_spirit_eater
SpliceString – x0_i0_stringlib
SSMGetSummonFailedLevelUp – x2_inc_summscale
SSMLevelUpCreature – x2_inc_summscale
SSMScaleEpicFiendishServant – x2_inc_summscale
SSMScaleEpicShadowLord – x2_inc_summscale
SSMSetSummonFailedLevelUp – x2_inc_summscale
SSMSetSummonLevelUpOK – x2_inc_summscale
StandardAttack – ginc_actions
StandardAttemptAreaTransition – ginc_transition
StandardBarkTriggerConditions – ginc_trigger
StandardExchange – ginc_wp
StandardSpeakTriggerConditions – ginc_trigger

134

Function Index.

StartBeam – ginc_reflection
StartBehavior – ginc_behavior
StartProtectionLoop – x0_i0_talent
StopBehavior – ginc_behavior
StopKeepingDead – x0_i0_henchman
StoreCampaignDBObject – x0_i0_campaign
StoreCampaignHenchman – x0_i0_henchman
StoreHenchmanItems – x0_i0_henchman
StoreLastMelee – x0_i0_equip
StorePlayerQueuedTarget – ginc_companion
STR_PersonalItem – nw_i0_henchman
STR_QuestItem – nw_i0_henchman
STR_RewardItem – nw_i0_henchman
StripAllPersonalItemsFromEveryone – nw_i0_henchman
SuccessNotify – ginc_crafting
SurrenderAllToEnemies – x0_i0_partywide

TakeGold – nw_i0_plot, nw_i0_tool
TakeNumItems – nw_i0_plot
TakePlotItem – x0_i0_plotgiver
TakeQuestItem – x0_i0_plotgiver
TalentAdvancedBuff – x0_i0_talent
TalentAdvancedBuff2 – x0_i0_talent
TalentAdvancedProtectSelf – x0_i0_talent
TalentBardSong – x0_i0_talent
TalentBuffSelf – x0_i0_talent
TalentCantrip – x0_i0_talent
TalentCureCondition – x0_i0_talent
TalentDebuff – x0_i0_talent
TalentDragonCombat – x0_i0_talent
TalentEnhanceOthers – x0_i0_talent
TalentFeatFilter – x0_inc_generic
TalentFilter – x0_inc_generic
TalentFlee – x0_i0_talent
TalentHeal – x0_i0_talent
TalentHealingSelf – x0_i0_talent
TalentKnockdown – x0_i0_talent
TalentLastDitch – x0_i0_talent
TalentMeleeAttack – x0_i0_talent
TalentMeleeAttacked – x0_i0_talent
TalentOthers – x0_i0_talent
TalentPersistentAbilities – x0_i0_talent
TalentRangedAttackers – x0_i0_talent
TalentRangedEnemies – x0_i0_talent
TalentResurrect – x0_i0_talent
TalentSeeInvisible – x0_i0_talent
TalentSelfProtectionMantleOrGlobe – x0_i0_talent

TalentSneakAttack – x0_i0_talent
TalentSpellAttack – x0_i0_talent
TalentSpellFilter – x0_inc_generic
TalentSummonAllies – x0_i0_talent
TalentUseEnhancementOnSelf – x0_i0_talent
TalentUseProtectionOnSelf – x0_i0_talent
TalentUseProtectionOthers – x0_i0_talent
TalentUseTurning – x0_i0_talent
TalentWarlockSpellAttack – nwn2_inc_talent
TalkToListener – ginc_wp
TerminateSpiritEater – kinc_spirit_eater
TestAddRosterMemberByTemplate – ginc_companion,

ginc_roster
TestRemoveRosterMember – ginc_companion, ginc_roster
TestTalent – x0_i0_talent
ThreatenCheck – x0_i0_common
TLChangeAreaGroundTiles – x2_inc_toollib
TLResetAreaGroundTiles – x2_inc_toollib
TLVFXPillar – x2_inc_toollib
TransferItem – ginc_item
TransformObject – x0_i0_transform
TransformObjectToCreature – x0_i0_transform
TransformObjectToItem – x0_i0_transform
TransformObjectToPlaceable – x0_i0_transform
TrapDoElectricalDamage – nw_i0_spells
TriggerAddHighlight – x0_i0_highlight
TriggerExplodeObject – x0_i0_corpses
TriggerObjectTransform – x0_i0_transform
TriggerProjectileTrap – x0_i0_projtrap
TriggerRaiseCorpse – x0_i0_corpses
TriggerRemoveHighlight – x0_i0_highlight
TryBanterWith – x2_inc_banter
TryKiDamage – x0_i0_talent
TrySpell – x0_i0_talent
TrySpellForEffect – x0_i0_talent
TrySpellGroup – x0_i0_talent
TryTalent – x0_i0_talent
TurnToFaceObject – x0_i0_position
TypicalFarmer – ginc_wp
TypicalTalk – ginc_wp

UnequipSlot – ginc_item
UnFreezeAssociate – x2_inc_cutscene
UpdateClockForAllPlayers – ginc_time
UpdateClockForPlayer – ginc_time
UpdateSEPointsForTimePassed – kinc_spirit_eater
UpdateSpiritEaterCorruption – kinc_spirit_eater

135

Function Index.

UpdateSpiritEaterPoints – kinc_spirit_eater
UpdateWhoIsSpiritEater – kinc_spirit_eater
UseDetectMode – x0_i0_modes
UseSecretTransport – x0_i0_secret
UseStealthMode – x0_i0_modes
UT_FakeEncounter – ginc_utility
UT_Spawn – ginc_utility
UT_SpawnAtWP – ginc_utility
UT_SpawnDelay – ginc_utility

ValidTarget – x0_inc_generic
VectorToString – x0_i0_position
VerifyCombatMeleeTalent – x0_i0_match
VerifyDisarm – x0_i0_match
VoiceBadIdea – x0_i0_voice
VoiceCanDo – x0_i0_voice
VoiceCannotDo – x0_i0_voice
VoiceCryForHelp – ginc_death
VoiceCuss – x0_i0_voice
VoiceFlee – x0_i0_voice
VoiceGoodbye – x0_i0_voice
VoiceHealMe – x0_i0_voice
VoiceHello – x0_i0_voice
VoiceLaugh – x0_i0_voice
VoiceLookHere – x0_i0_voice
VoiceNearDeath – x0_i0_voice
VoiceNo – x0_i0_voice
VoicePicklock – x0_i0_voice
VoicePoisoned – x0_i0_voice
VoiceStop – x0_i0_voice
VoiceTaskComplete – x0_i0_voice
VoiceThreaten – x0_i0_voice
VoiceYes – x0_i0_voice
VoidCreateBeam – ginc_effect
VoraciousDispelCallback – nwn2_inc_metmag

WakeUpCreature – ginc_death
WalkWayPoints – x0_i0_walkway
WiseToDualWield – x0_i0_equip
WrapperActionAttack – x0_i0_equip
WMBuild2DACache – x2_inc_restsys, ginc_restsys
WMCheckForWanderingMonster – x2_inc_restsys, ginc_restsys
WMDoListenCheck – x2_inc_restsys, ginc_restsys
WMFinishPlayerRest – x2_inc_restsys, ginc_restsys
WMGet2DAFileName – ginc_restsys
WMGetAreaHasTable – x2_inc_restsys
WMGetAreaListenCheck – x2_inc_restsys, ginc_restsys
WMGetUseAppearAnimation – x2_inc_restsys, ginc_restsys
WMGetWanderingMonstersDisabled – x2_inc_restsys
WMGetWanderingMonsterProbability – ginc_restsys
WMGetRestStringRef – ginc_restsys
WMRunAmbush – x2_inc_restsys, ginc_restsys
WMSet2DAFileName – ginc_restsys
WMSetAreaProbability – x2_inc_restsys, ginc_restsys
WMSetAreaTable – x2_inc_restsys
WMSetupAmbush – x2_inc_restsys, ginc_restsys
WMSetWanderingMonstersDisabled – x2_inc_restsys,

ginc_restsys
WMStartPlayerRest – x2_inc_restsys, ginc_restsys
WrapInterjection – x2_inc_banter
WrongAlign – x0_inc_generic
wsEnhanceItem – x2_inc_ws_smith
wsHaveEnoughGoldForCurrentItemProperty – x2_inc_ws_smith
wsSetupPrices – x2_inc_ws_smith

X2CastOnItemWasAllowed – x2_inc_spellhook
X2GetSpellCastOnSequencerItem – x2_inc_spellhook
X2PreSpellCastCode – x2_inc_spellhook
X2RunUserDefinedSpellScript – x2_inc_spellhook
X2UseMagicDeviceCheck – x2_inc_spellhook

136

	System Functions.
	Actions
	Conversation
	Interact
	Movement
	Talents

	Combat
	Encounter

	Creatures
	Management
	Alignment
	Associates
	Class Levels and Experience Points
	Modes and States
	Player Characters
	Properties

	Effects
	Management
	Restrictions
	Subtypes
	Query
	Constructors
	Basic
	Configurable
	Area of Effect

	Cutscene Effects

	Environment
	Lighting
	Music
	Sounds

	Events and Scripts
	Events
	Script Subroutines
	Perception
	Spell
	Triggering Objects

	Factions
	Management
	Party
	Query
	Reputation

	Game Management
	Commands
	Two-Dimensional Arrays
	File Updates

	Geometry
	Position
	Math

	Interaction
	Collision
	Conversation
	Cutscene
	Reaction
	Saving Throws
	Checks

	Sense
	Store

	Interface
	Panels
	Components
	Journal
	Messages
	Message Colors

	Inventory
	Management
	Creation
	Query

	Module Item Scripts

	Item Properties
	Management
	Query
	Properties

	Layout
	Areas
	Subareas
	Campaigns
	Modules

	Objects
	Get Objects
	Management
	Immediate Actions
	Properties

	Obstacles
	Doors
	Lock
	Traps

	Talents
	Feats
	Use Limited Feats

	Skills
	Spells

	Time
	Variables
	Strings
	Storage
	Type Conversion

	Arrays.
	Action Scripts.
	Condition Scripts.
	Include Files.
	Function Index.

