
NWN2 Toolset Guide
Volume I
Edition 6.1

This work is intended to serve as a basic user's guide and
reference for the Neverwinter Nights 2 module-building
toolset, hereafter denoted by NWN2. Volume II includes a
set of supplementary appendices, volume III can be used as
a scripting reference, while volume IV has some example
scripts.

As the documentation for the toolset is somewhat limited,
I began developing this work as a personal reference during
the process of gaining familiarity with it's capabilities. The
information was assembled by reading the tool's built-in
help page, experimenting with the various toolset features,
perusing the game's install directory, and gleaning
knowledge from the internet – especially from the very
useful Bioware NWN2 forums. For a list of additional

resources used, see the references section at the end of the
document.

In cases where I was unable to determine the purpose of a
feature or how to resolve a problem, I noted these in italics.
If you find any corrections or have suggestions, edits and
additions that would improve this document, I would enjoy
hearing from you. Please send me a friendly e-mail.

Other than being a licensed purchaser of the software, I
have no affiliation with the firms that build and maintain
this toolset. Thank you for taking the time to look through
this work, and I hope you find it of some use.

—Bob Hall
September 1, 2013

Table of Contents
Interface...2

Menus... 2
Toolbars..5
Panels..7
Patching.. 8

Creating a Game..............................10
Modules.. 13

Areas..16
Editing.. 16
Exterior Areas...............................21
Interior Areas................................32

Blueprints.. 37
Items... 38
Creatures.......................................47

Doors.. 58
Stores.. 63
Placeables..................................... 67
Triggers...76
Encounters.................................... 78
Sounds.. 80
Waypoints.....................................83
Static Cameras.............................. 85
Lights..86
Trees... 89
Placed Effects............................... 91
Prefabs.. 94

Conversations.................................. 95

Editing.. 97
Tabs.. 99

Tools..104
Journal.. 104
World Map Editor.......................105
Overland Map.............................106
Plugins.. 107

Writing Scripts.............................. 111
Editing.. 111
Debugging.................................. 115
Examples.................................... 118
Item Scripts.................................122

References..................................... 124
Revision History............................125

1

mailto:rjh405@gmail.com?subject=NWN2 Toolset Notes

Interface

Interface
The NWN2 Toolset is a graphical tool for generating a

computer role-playing adventure that can be played using
the NWN2 game engine. It is installed as a standard part of
the game package and can be launched from the game
startup interface.1

The game list Windows XP as the requirement operating
system. When run on a Vista system, the toolset will
immediately stop and generated an error dialog. To get the
toolset to run in Vista, bring up the application's Properties
window from the desktop, select the Compatibility tab and
configure it to run in compatibility mode for “Windows XP
(Service Pack 2)”.2 (It is also recommended that you also set
the “Disable visual themes” option.) After clicking Okay,
the toolset should launch properly. If it still does not, you
may have an outdated version of DirectX loaded on your
PC. You should have version 9.0c or subsequent.

It can take about twenty seconds for the toolset to finish
loading into memory. Once the toolset is running, you will
be presented with an editing interface consisting of menus,
toolbars and panels. These components are described in
more detail below.

The following terminology is used in the interface:

• A module is an adventure that can be played through
the game engine. A campaign consists of two or more
modules.

• An area represents a rectangular region of exterior or
interior terrain that provides a playing surface.

• An object is a set of data representing a component or
control record within the game. Blueprints are object
definitions that represent creatures, items, doors,
buildings, lights, trees, furniture, and so forth.

1 It can also be launched from the PC's Start menu under the
Atari pick. By default the game installer did not create a
toolset icon on my Vista desktop. If you locate the application
folder, you can create a desktop icon of the menu toolset by a
right-click and selecting 'Create Startup Icon'.

2 If you are reloading the game, the OS may have cached the
compatibility settings from before. In this case, try changing it
to a lower compatibility setting then change it back.

• A script is sets of commands that are used to control
objects and manage the game environment.

• A conversation is a branching tree of text strings that
are used simulate verbal interactions.

• A journal is a series of text descriptions that are used
to provide module status information to the player.

The toolkit interface

Menus
The menu bar at the top of the window provides various

options for managing the toolset. It consists of the File,
Edit, View, Plugins and Help menus. The menus and menu
items are configured with various accelerator key options
listed in brackets. In the descriptions below, a notation such
as 'alt-x+y' means to hold down the 'alt' key, then press the
'x' and 'y' keys in succession.

File menu

The File menu [alt-f] combines two different functions.
The first is to provide access to the files where the toolset
edits will be saved. The menu also includes several options
for preparing an edited module for use with the game
engine.

• New [alt-f+n] has a submenu for creating a new
module, area, conversation or script. These are the

2

Menus

components that are used to create a game.
• The Open... [alt-f+o or ctrl-o] and Open Directory...

[alt-f+d] items will allow you to browse for a saved
module to edit. By default your modules are saved to
the “Neverwinter Nights 2” folder under your personal
documents. You can also open the main campaign
modules from the 'Modules' under the game's install
directory. (Be careful not to save changes to these
modules or the game might not run correctly.) For a
sample module, try opening '0100_UninvitedGuests'
from the 'Modules' folder.

• The Save... [alt-f+s or ctrl-f+s], Save As... [alt-f+a] and
Save Directory... [alt-f+v] options save your current
edits to either a file with a '.mod' extension or to a
directory tree.

On some occasions, module files have been known to
become corrupted and unrecoverable. (I've run into
this twice thus far.) When this happens, the module
will open but there will be no content remaining from
your prior edits. If this happens then you will need to
restore the module from a backup.

Some have suggested that saving your work as a
directory, rather than a module file, will make it more
robust against corruption. Turning off the auto-save
feature also seems to reduce the frequency of module
corruption. (See the View menu below.) Alternatively,
you can use the Export menu item to save copies of the
Areas, Conversations, Scripts and other significant
blueprints. The latter operation has saved me re-work
on more than one occasion.

• Bake Current Area [alt-f+b or ctrl-B] and Bake All
Areas [ctrl-A] triggers an automated routine that
defines the regions of an area map that can be
traversed by the player's characters. It is an integral
part of the process for preparing an area for use in a
module, and must always be run at least once per area
before playing the game. Failure to bake an area can
make it impassible and could even crash the game.

• Make Client Pack (PWC File) is used to create a
reduced size file that can be copied to client systems.
It allows participants to join a multi-player game using

a module built with the toolset.
• Open Conversation/Script [ctrl-O] opens a dialog

interface that can be used to open the various bundled
scripts included with the toolset. It will open the
selected file in the Edit panel (described in the chapter
on writing scripts). Along the top of the dialog is a
filter text box that can be used for look for specific
string patterns in the files. (For example, enter 'gc_' for
the conversation condition scripts.)

• Import... [alt-f+i] can be used to load Encapsulated
Resource Files (.erf) into your current edit session,
while Export... [alt-f+e] will save specific module
components to '.erf' files. This is a convenient method
for transferring unique components between different
modules, or archiving major edits. See also the ERF
Editor pick under the Plug-ins menu.

• The Run Module [ctrl-f5] pick will launch a trial
version of your current module at the site of your Start
Location. It automatically assigns you the PC that
appears first in the list of pre-generated characters,
which are ordered alphabetically by first name.3 If you
do not have the game disk installed, a dialog will
appear asking you to insert the CD/DVD.

• Verify Module... [shift-f5] will perform certain
validation tests on your current module. The results
are displayed in a Verify panel.

• Compile will perform a compilation of scripts used in
your module. The results are displayed in the Verify
panel. If you use custom include files in your scripts, it
is important to recompile all scripts in your module
each time you modify an include file.

• Close Tab [alt-f+c] will close the currently selected

3 If you don't want to test your module using the first stock
character in the list, you can use the NWN2 game to create
and export a customized character that has a suitable name.
(For this purpose I created a NWN2 character with a name
that begins with “Aa”, such as Aaron or Aadela.)

The toolset will always select the first '.bic' file in the
'Neverwinter Nights 2/localvault' folder in the documents area
of your home folder. To use a pre-existing character, insert a
numeral at the start of the corresponding '.bic' file name. This
will put the file at the start of the alphabetical sort order.

3

Menus

tab in the Edit panel. Alternatively, you can right-click
on an Edit panel tab and select Close from the pop-up
menu.

• Exit [alt-f+x] will prompt you to save the current edits
then quit the toolset.

Edit menu

These menu items are used for area editing operations.

• Undo [ctrl-z]
• Redo [ctrl-y]
• Cut [ctrl-x]
• Copy [ctrl-c]
• Paste [ctrl-v]

The edit functions can prove unreliable when placing data
on the clipboard for transfer between the Toolset and other
applications. For example, you may need to make several
copy attempts before a selection will be added to the copy
buffer.

View menu

• Module Properties [alt-v+p] will display the properties
of the currently open module in the Properties panel.
This is useful for applying global properties and
scripts to a module.

• Journal [alt-v+j] will allow you to create and edit
journal entries for the module or campaign. See the
Journal section for more details.

• Factions [alt-v+f] is a table that shows the likes and
dislikes between creatures belonging to different
factions. A faction is comparable to an alliance, in
which members of the same faction support each other
during combat. Likewise, members of a faction that
are not directly involved in a conflict will avoid the
ongoing combat.

• 2DA File [alt-v+2] opens a dialog interface that allows
you to select one of the two-dimensional data files for
viewing.4

4 Much of the static game information is configured through
these arrays, so they should be referenced when the existing

• Challenge Rating Editor allows you to set the
challenge rating for creatures that have been created
for your module.

• Mode selects the type of action performed in the Edit
panel. These functions are repeated in the toolbar, so
there is little reason to use the menu. Four of the items
have equivalent f-keys.

• Options [alt-v+o] opens a dialog that allows you to
modify the toolset appearance and behavior. Of
particular interest:
i. General/Autosave sets the frequency that

automatic saves will be performed (in minutes per
save), and how many copies to keep. I turn this
off to avoid corruption problems.

ii. Graphics/FarPlane sets the distance of the far
plane while drawing Exterior terrain. This is the
blue plane that appears when you scroll well back
from the area.

iii. Script/Font sets the font used for editing scripts.

Plugins menu

• Process [alt-p+p]
• Animation Viewer allows you to view the various

animations associated with the different creature
appearance types. First, select New Appearance from
the File menu, then pick an appearance and click okay.
Next, choose a stance, select an animation5 and add to
the queue. Click the green arrow button to loop the
animation.

• Campaign Editor is used to create campaigns
consisting of multiple modules. Opening a campaign
built with a patched toolset may result in a "Could not
load module" error.

• Community
• ERF Editor can be used to view exported resource

toolkit information does not provide sufficient details. See the
Arrays section of the second volume for more information.

5 The stances include UNA = unarmed; 1HS = one-handed
weapon; 1HSS = one-handed weapon with shield; DHS =
dual-handed weapons; C2H = two-handed club; O2HT = two-
handed thrust; O2HS = two-handed swing, and so forth.

4

Menus

files created with the Export... menu item.
• Model Viewer
• Sound Set Editor
• Universal Blueprint Changer
• Visual Effects Editor [alt-p+v] is a dialog interface that

can be used to edit '.sef' and '.bbx' files
• World Map Editor is a dialog that is used to edit game

world map (.WMP) files. See the World Map Editor
section for more details.

Additional items will appear in this menu as new plug-ins
are installed.

Help menu

• Help [alt-h+h] opens up the basic help web page. This
is a good place to look for information on how to get
started with the toolset. It also includes several
examples and screen shots.

• About [alt-h+a] lists the current toolset version.

Toolbars
The default editor has two standard toolbars located just

underneath the window menus. The first toolbar allows you
to toggle various graphical and acoustical states of the main
Edit pane (at center) while it is being used to edit areas.
Some of the toolbar effects may vary slightly depending on
whether an exterior or interior area is being displayed, but
in general they are consistent.

• Grid shows a coordinate grid across the map when an
area is open for editing. On an exterior area, major
grid lines are black while the minor lines are red. On
indoor area, the grid lines are green and they only
appear in open areas.

• Occlusion Grid displays the maximum area where the
character can roam. On the exterior area maps, this is a
rectangle located two major grid lines in from the edge
of the map. It shows as red where it intersects with
ground that is at or above elevation 0.0. On interior
area maps this gives a tiling grid, consisting of four
minor lines per major line.

• Collision draws boxes around objects showing the
collision volumes; presumably where the game engine
will check for collisions between objects.

• Surface Mesh shows the walkable areas of the map
using yellow lines as borders.

• Baked (with Surface Mesh on) displays the blocked
areas of the map after baking the map. After baking it
is importance to check the map for impassible grid
squares. See the areas chapter for more details on
addressing this problem. Note that activating this
option will hide the Surface Mesh on the outer border
region of an exterior map.

• Wireframe turns off rendering of the terrain and only
displays the triangular wireframe that defines the
surface altitude.

• Skeletons prints a summary line for each non-static
placeable, and displays skeleton animation data. The
last value in the yellow-hued strings gives a range
from the viewer's perspective.

• Shadows turns on rendering of shadows from objects
but not from the terrain.

• Water turns on the water planes. Turning this off is
useful for drawing the underwater surface.

• Normal Mapped Terrain is (I think) how the terrain
will be rendered in the game, including surface bump
shadows.

• Frame Rate prints a table of video memory
information.

• Bloom makes brighter patches of the area give off a
faint surrounding glow. The net effect can be to make
the image more fuzzy and obscure details.6

• Use Area Far Plane puts a plane through the image
perpendicular to the line of sight. The distance to this
plane is set via the Far Plane field in the Graphics
Options. To set this, choose 'Options...' from the View
menu. For exiting purposes, I usually set it to 1000 so
it is out of the way.

6 If certain rendering features don't seem to be rendering
properly in the toolset, such as the bloom, try exiting and then
running the game separately. This resets the rendering engine,
so the features may start working again.

5

Toolbars

• Fog turns on the rendering of the fog settings from the
area properties Day/Night Cycle Stages parameters,
based upon the current selection from the Day/Night
menu (described next).

• Sky shows the appearance of the sky ceiling, which is
visible when you pan the view all the way down until
the scene is horizontal. The appearance is based upon
the area properties Day/Night Cycle Stages
parameters, which uses the current selection from the
Day/Night menu (described next).

• Day/Night determines the appearance based on the
corresponding Day/Night Cycles Stages configuration.
Try different time picks to see how the map will
appear under various viewing conditions. Normally
you would want to edit an area with this menu set to
Daytime or Default. Setting 'Run' and 'Fast' will cycle
through the full daytime cycle within the span of half a
minute.

• Sound controls whether you can hear the Ambient and
Placed sounds that will be used during the game. The
Placed sounds will vary depending on the Sound
chosen and the position of the view. I.e. You can move
the area view about to see how a place sound will be
heard.

• Music plays the music selected in the area properties.

The lower toolbar includes display filters and the main
editor controls.

• Filters is a menu that allows you to fine tune the area's
display and selection of objects by their blueprint
category. In an area that is crowded with objects, this
can be used to select specific objects by hiding the
other object categories or making them non-selectable.
(You can also select individual objects from the Area
Contents panel, although that may require more trial
and error.) Note that the hidden objects are not
deleted; they are merely concealed from sight.

• Snap will cause a door to attach itself to a doorway.
On interior areas, this setting will also cause
placeables to attach themselves to hookpoints along
walls. Hookpoints are the multi-colored, three-axis
shapes that appear along walls. If you have trouble

assigning a placeable to the right hookpoint, try
toggling the snap off, moving the placeable about,
then re-enabling snap.

• Select Objects [f2] will allow you to pick an object for
relocation. Use shift-click to select multiple objects, or
drag the cursor in a rectangle to choose the objects in
an area. Clicking on a selected object with the shift
key down will deselect that object. Clicking and
dragging selected objects will move them about the x-
y plane. Holding the shift key while pressing PgUp or
PgDn will change the object's vertical position.
Turning the scrolling knob on the mouse will change
the vertical position of the selected objects in larger
increments (0.24 per click).

• Paint Objects [f3] will cause the currently selected
blueprint to appear at the location of the cursor, while
remaining at the ground level of the surface. Left-
clicking will place a copy of the object at the current
position. Press Esc to switch to Select Objects.

• Select Terrain [f4] will select grid boxes on the current
map. Right clicking will switch to Paint Terrain.

• Paint Terrain [f5] sets the cursor to use whatever
Terrain is currently selected from the Selection panel
(see the chapter on Areas). It is used on exterior areas.

• Tiles is used to paint tiles on an interior area using the
currently highlighted Tile in the Selection panel. It is
also used to select one or more individual tiles to fine
tune their properties, such as the colors and textures.

• Set Start Location will paint a special object consisting
of an red arrow inside a circle. This defines the
location where the character will first appear when the
module is launched, and the direction [s]he will be
facing. If you haven't defined this yet, you will get a
query each time the module autosaves.

• Paint Spawn Point is used to define the spawn points
for the currently selected Trigger object. (See the
section on Triggers.)

• Create Transition...
• Drag Selection turns on a dragable rectangle that can

be used to select multiple objects in an area.

6

Panels

Panels
There are six standard panels available with the toolset. By

default, the main editing panel is located in the center.
There are three smaller panels to the left and two along the
right. You can move these panels around by dragging their
title bar, or manipulate their visibility with the tiny
rectangle and pin icons in the upper right of the panel. The
tiny rectangle changes the proportionate size of the panel.
You can also adjust the panel size by moving the cursor to
the panel edges until it changes to a double arrow, then
click-dragging. Clicking on the pin icon converts the panel
to a tabbed bar along the side of the window. Click on these
tabs to display the panel, then click on the pin to restore it to
visibility.

As I don't know what titles the game vendor uses to
identify the toolset panels, I will use the names below in the
remainder of the document.

A/C/S Panel

Once a module has been created, the upper-left panel
displays the areas, conversations and scripts: basically all of
the module features that can be generated by the New
submenu item under File. Right clicking in this panel will
display a menu of options, such as 'Add' for creating a new
addition of the current type. You can switch between the
content using the tabs along the bottom of the panel.

Area/Conversation/Scripts panel with the Areas tab selected

By default this panel will also display Campaign
Conversations and Campaign Scripts. When you click on
either of these panels, an 'X' icon will appear in the upper
right corner. If you click on the 'X', the tab will be removed
from the panel. Note, however, I have not found any means
to restore these tabs once they are removed.

Area Contents Panel

When an area is open in the edit panel, selecting any of the
tabs in this panel will display a list of the Placeable objects
of the specific type. This can be useful for finding specific
objects that you want to edit.7 Double-clicking on an object
in any of the lists will cause the area Edit panel to reposition
with the view centered on that item.

The search tab will open a dialog window that can be used
to search for a name under one of the tabs. Thus it can be
used to search for a “Bridge” under the Placeables listing. If
it gets a match, it will select that object. If you select an
object in the contents list you can right click and display the
properties in a new window. (The 'Graph...' option doesn't
seem to do anything.) The Creatures list can also show the
inventory and equipped items of the listed creatures.

Verify Panel

The Verify panel after compiling all scripts in the module.
A script has an error as indicated by the red octagon icon.

When you execute a Compile operation from the File
menu, the results will appear in this list at the bottom left. If
you have an extensive set of scripts, it may take many

7 Note that placeables that are converted to environmental
objects will be relocated to the Environmental Objects tab.

7

Panels

seconds for the list to appear. When it does, you'll have to
scroll down to see if any errors occurred.

Edit Panel

By default, the largest panel lies in the center of the toolset
display. This panel is used to edit the entries listed in the
A/C/S panel, and to view the built-in scripts and 2DA
arrays. To edit an area, click on the Area tab in the A/C/S
panel, select the area from the list, then right click and
choose “Open”. The area will be opened under a tab located
at the top of this panel.

Tabs at the top of the Edit panel

When multiple items are open, they will each have their
own tabs. (There is a limit of three open Areas at a time.)
Selecting a tab will bring the associated edit entry to the
fore. The tabs can be re-arranged by dragging them
horizontally. Entries can be closed by right-clicking over
the tab and choosing “Close”. You will be prompted to Save
your edits.

Properties Panel

Located at the upper right, this shows the various
configuration parameters for the currently selected item,
whether it is an object in the area, a blueprint, or an entry in
the A/C/S panel. This is used for setting the properties of
Module, Areas, Conversations, Blueprints, objects and
Tiles.

Selection Panel

At the lower right is a grab-bag tool for selecting various
editing graphics or game objects. This is the primary panel
for managing what types of changes you are going to make
to an area. The tabs along the bottom of this panel are used
to select the general categories, then the corresponding
selections and options appear above the tab. The Blueprints
tab provides a selection of objects that can be placed in an
area. Tiles are used to choose the appearance of grid squares
on an interior map, while Terrain is used for controlling
how the terrain will be modified on an exterior map.

Patching
NWN2 patches are available that will will fix various

issues with the toolset and implement new functionality. If
you have internet access, these can be loaded via the game's
update control. The vendor recommends that you use
automatic patching to update your game and toolset, unless
this method fails consistently or you don't have a direct
internet connection. It is generally a good idea to keep your
game patched to the latest level.

Warning: Modifying any of the content under the game's
install directory will cause patching to fail. You should
restrict your modifications to your Documents folder in
your home directory.

To manually update the toolset from version 1.0.1115.0 to
version 1.0.1588.0, I pulled version 2.25 of the
NWNPatcher tool from the NW Vault site and downloaded
the following patches from the site's language patch page:

• nwn2_pcx1_english_from1101115_to1101116.zip
• nwn2_pcx1_english_from1101116_to1111152.zip
• nwn2_pcx1_english_from1111152_to1111153.zip
• nwn2_pcx1_english_from1111153_to1121295.zip
• nwn2_pcx1_english_from1121295_to1131407.zip
• nwn2_pcx1_english_from1131407_to1131409.zip
• nwn2_pcx1_english_from1131409_to1211549.zip
• nwn2_pcx1_english_from1211549_to1221586.zip8

• nwn2_pcx1_english_from1221586_to1221587.zip
• nwn2_pcx1_english_from1221587_to1221588.zip

The nwn2_pcx1_english* patches are applicable to the
game with the 'Mask of the Betrayer' expansion.9 Each
patch file is at least 47 Mb, and some are up to 90 Mb in
size. Each '.zip'-extension file contains an RTP file, which I
extracted and copied to the patch folder in the game's
installation directory. In Vista this step requires
administrative privileges.

8 This patch was not available from the language patch site, but
I located a copy with a search engine.

9 The nwn2_pc_english* files should only be applied if you
have not yet installed the expansion game.

8

Patching

When the NWNPatcher tool is run, it opens a dialog
window. I selected the Queue button and added each of the
RTP files in the exact order listed above. (Note that if you
want to allow patch undo, you will have to load the patches
one at a time.) Clicking the Patch button launched the
patching process, which was successful for me.

After the patch is installed, a set of patch notes can be
found in the game's install folder. The patches added many
new changes to the toolset. There were also a number of
item icons missing, and a couple of the property field
comments seemed incorrect. Your mileage may vary, of
course, and the tool comes with no warranty. If the patch
doesn't work properly you may need to start over and reload
the game.

Note that I ran into a problem with the patch:

• nwn2_pcx1_english_from1221588_to1231763.zip

that was released in 2009. After installing the patch, the
toolset would no longer run even in Windows XP (SP2)
compatibility mode. It fails with a problem event name
CLR20r3 and a signature 'System.TypeLoadException'.

9

Creating a Game

Creating a Game
The NWN2 toolset is used to create a role-playing

adventure that can be played with the NWN2 game engine.
A completed game can range from a short module with a
handful of areas up to an extensive campaign spanning
multiple modules and many areas. Each module contains a
set of interconnected areas that can be traversed by a party
of characters, as well as the various area contents,
interactive creatures, visual and auditory effects, and the
scripts and triggers for processing events. The construction
of an adventure requires understanding the toolset's features
and functions, many of which are described in this
document.

Before you start building a module, it is a helpful to have a
general idea about the type of adventure you want the
players to experience. This game story is formed into a plot
that you structure into the module or campaign. The
simplest form a game story can take is a linear plot
consisting of a set of goals that must be completed in
sequence. A more complex plot can employ a branching
tree of possible choices by the player, with each branch
potentially making significant changes to the choices and
outcome of succeeding events.

Until you become familiar with the toolset it is usually
recommended that you start simply by creating a few small
areas and only allow a limited selection of options for the
player. As you gain experience, this initial module could be
used as the prelude to a more expansive storyline. For larger
games, it may be helpful for you to assemble a basic design
document that outlines the story with specific elements and
goals. This document may need to be updated as your game
is developed, and it can serve as a record so that you can
maintain the consistency of your adventure as the game is
developed.

Environment

Areas form the playing surface that the player will traverse
and explore with a group of characters. Each area is
constructed by using the toolset editor to create the terrain
and decorate it with objects that are rendered as various

structures, furnishings and natural scenery. Some of the
objects provide dynamic behavior that can be interacted
with by the player, such as doors , creatures, controls, and
containers. Other functionality is controlled through marker
flags and polygonal outlines that are not directly visible to
the player, such as trigger regions and waypoint markers.

Many of the behaviors of dynamic game objects can be
configured by setting their properties. More complex
behavior can be managed with the built-in scripting system.
Scripts can be used to manage the animation and reactions
of creatures, the effects of conversations, the transition of
the party between areas, the special properties of unique
equipment, and so forth.

The game experience can be significantly enhanced by
visual and auditory effects that will draw the player into the
environment and bring the setting to life. The careful
selection and placement of Placeables, Sounds, Lights,
Trees and Placed Effects can all contribute to creating the
right mood, as can the area's lighting and weather settings.
Likewise, important characters can be customized to present
a unique appearance, and their distinctive personality can be
represented through conversation interactions. Items can
also be customized to present a unique appearance when
wielded, thereby contributing to the mythology of the game
setting.

Quests

A game plot can be structured in a modular fashion by
defining a set of quests, with each quest having a particular
goal and requirements for completion. Quests should be
detailed in journal entries that the player can review during
the game. These entries can be updated as each step in a
quest is completed, and a reward is often granted upon
success. Usually this reward is in the form of experience
points, money, or a beneficial item, but it can also include
an element that the player needs to advance to the next point
in the story, such as a key, a map location, or an important
contact.

10

Creating a Game

The state of the game's plot is tracked internally using
variables that can be set and accessed via scripts. Global
variables are stored at the module level and are typically
used for plot-related information and game changing events.
Local variables are associated with objects, such as a
creature or an item, and may be used for tracking specific
components of a quest or states of the game environment. In
a multi-player module, you would typically want to set local
variables on a player's character, because the variables
reflect the state of that player in the game.

The completion of a quest requires the player to overcome
one or more challenges. Here are some typical obstacles
that can be placed in path of a quest's completion:

• Creatures – The player's PC may encounter creatures
that must be overcome by combat, persuasion or
some other means. Creatures can be individually
placed in an area by selecting them from the
Blueprints, or they can be activated by an Encounter
blueprint. In the event of combat, the creature design
requires careful balancing by the game designer in
order to make certain the player has a reasonable
chance of victory, while also suffering a degree of
risk. To enhance the player's sense of game depth,
some encounters may be configured to allow an
alternate approach to success, such as the use of Hide
and Move Silently skills to sneak past a powerful
guard and steal a key.

• Conversations – The player may need to hold
conversations with one or more creatures and choose
the correct paths through the discussion tree. Each
response selected by the player may entail a skill
check, the possession of a particular item, the
completion of a task, a correct decision, or some other
factor. Conversations with members of the player's
party may also be employed to solve specific
problems, or to open up new quests.

• Skills – The player's path to the quest objective can
be blocked by locked doors, traps or hidden features,
requiring specific skills to overcome. These obstacles
can be set on Door and Container objects, or placed at
a location via a Trigger blueprint.

• Puzzles – These typically require some thought on the
part of the player, an element of luck, or both.
Solving the puzzle may require the player to orient a
set of placeables in a particular order, respond with
the correct password in a conversation, answer a
riddle, press levers in the right order, see through
some form of visual deception, or apply an item that
is configured as a key. An area could be configured
as a maze using teleports to make navigation more
difficult, or the party may be required to pass through
a set of doors in a particular order.

• Exploration – Some quests can simply be about
drawing a player into a new location. This area can
have obstacles that are not necessarily related to the
quest, but provide experience that will ultimately
make the player's character more powerful. Some
elements of an area can be made inactive until they
are needed, or they can be kept hidden until
discovered by a successful Search skill check.
Transitions between areas can be accomplished
through Doors or Triggers that lead to different Doors
or Waypoints.

Often there may be more than one way to complete a
quest, with the particular path being chosen by the player,
or else it can be based upon specific aspects of the player's
character type (such as the class or race). Having multiple
paths available provides the appearance of depth and makes
an adventure seem less linear and predetermined. The most
difficult section of a quest is usually saved for the last, such
as the final confrontation with the boss of an evil
organizational or a large scale pitched battle that may
require careful planning to win.

As the player advances through the game, they can gain
possession of additional gold, gems and items. The
acquisition of more powerful items will improve the
capabilities of the PCs, allowing them to tackle more
challenging quests. However, it is important balance the
power of the items provided with the level of the characters
and the degree of risk. At low levels, for example,
expendable goods such as potions, scrolls and alchemical
mixtures are the more common types of items found.

Stores are often placed in safe areas of the game

11

Creating a Game

environment so that the player can exchange their treasure
for useful equipment. Typically a store is opened during an
interaction with a creature that is configured as a merchant.
The Craft skills can also be used to create useful items, and
so suitable crafting tables or similar mechanisms can be
made available within the game for this purpose.

Testing

If you plan to distribute an adventure module to other
players, it is essential to perform testing to make certain
everything functions as expected. During the construction
phases stages you can test the module yourself by using the
Run Module item under the File menu. When the game is
close to completion, you may also want to ask other players
to test it for you in order to catch issues you may have
missed.

The game engine automatically assigns you the PC that
appears first in the list of pre-generated characters, which is
ordered alphabetically by first name. If you don't want to
test using the first stock character in the list, you can use the
NWN2 game to create and export a customized character
that has a suitable name. (For this purpose I created a
NWN2 character with a name that begins with “Aa”, such
as Aaron or Aadela.) Alternatively, the toolset will always
select the first '.bic' file in the 'Neverwinter Nights
2/localvault' folder in the documents area of your home
folder. To use a pre-existing character, insert a numeral at
the start of the corresponding '.bic' file name. This will put
the file at the start of the alphabetical sort order.

To test different stages of the plot, you will need to be able
to modify variables and make changes to the game. One
way to do this is to create a testing script that will make the
changes you need when the module is launched. This could
be implemented, for example, through the 'On Module Load
Script' module property in combination with one or more
test parameter set in the module's Variables field. I like to
employ a usable placeable that updates the module plot each
time it is clicked. Another approach could be to use a
conversation as a selection menu. See the chapter on
Writing Scripts.

While running the game engine, you can take a screen shot

via Ctrl-Shift-Print Scr. The image is saved as a jpeg file in
the 'Neverwinter Nights 2' folder in your documents. The
resulting file will be named NWN2_SS_mmddyy_hhmmss,
where mmddyy is the date and hhmmss is the time.

Credits

When you release a module, it is a common practice to list
the complete credits for all the work you did as well as help
from others and additional content that was added from an
online source. One way to do this is to add a journal entry
listing the full credits. A second approach is to create an
item in the starting inventory of the player that contains the
credits in the 'Localized Description' property of the item.
This can be performed via a script that is run in the 'On
Client Enter Script' property of the first area. A third
approach is just to include a separate text file with the
module.

12

Modules

Modules
A new, empty module is automatically created when you

launch the toolset. If you already have an existing module,
you can open it from the File menu. The starting location
for a module is set by choosing the 'Set Start Location' in
the toolbar, then clicking at a location in an Area. (See the
section on areas for details on how to create interior and
exterior areas.)

Properties

To view the properties of your current module, select
Module Properties from the View menu. The properties are
displayed in the Properties panel as a set of name-value
pairs grouped under heading blocks. The available blocks
are Misc, Scripts, Starting Area and Time. The individual
fields are described below.

Misc

This block includes various global parameters that apply
to the module in general.

• Cached Scripts – This field is apparently a hold over
from the first NWN release and is no longer used.

• Custom TLK File – This field is used to provide a
customized table for translated text. The property
notes recommend this only for advanced users.

• Description – This is the text string that will appear
when the player first selects the module from the
New Module interface of NWN2. It can be used, for
example, to specify the recommended character level
and to provide a brief hint about the module and its
author.

• Expansion Flags – The field notes state that this
defines the expansions that need to be installed before
the module can be played. I am unclear how this is
used.

• Hak Paks – A hakpak is a file that can be used to
override the standard content supplied by the vendor.
If you use a hakpak, then you will need to distribute it
with the modules you develop.

• Minimum Game Version – This field is disabled.

• Name – The name that will appear in the New
Module interface of NWN2.

• NX1 Required – If true, then the 'Mask of the
Betrayer' expansion is required to play this module.

• NX2 Required – If true, then the 'Storm of Zehir'
expansion is required to play this module.

• Tag – The tag used to refer to the module. It is
referenced in certain shell commands.

• XP Scale – This value is a multiplier for the
experience point awards for killing creatures. The
default setting of 10 gives rewards that seem in line
with the rulesbook values. In a script, this can be
changed using the SetModuleXPScale function.

Scripts

These event-handling scripts apply across the module,
regardless of the area where the players are currently
located. Area-specific events should be managed by scripts
assigned to each area. Some blueprints also have their own
script properties.

Note that some of the fields below were added in patches.

• On Acquire Item Script – This script is run whenever
an item is added to the inventory of the controlling
PC. Normally it runs the 'x2_mod_def_aqu' script.
The GetModuleItemAcquired() routine will return the
item that triggered this call. You can use the call
GetModuleItemAcquiredFrom() to find the object
that lost the item, and GetItemPossessor() to
determine the current owner.

• On Activate Item Script – This script is run whenever
an item is activated in the inventory of the controlling
PC. By default it runs the 'x2_mod_def_act' script.
GetItemActivated() returns the item that triggered this
script to run. The other GetItemActiv...() calls can be
used to obtain more information about the activation.

• On Client Enter Script – This runs a script each time a
player enters a module. It is empty by default. Use the
GetEnteringObject() to determine the player object.

• On Client Leave Script – This script is run when a
player logs out or leaves the module. By the time this
runs, the character has already departed and its data
has been removed. The GetExitingObject() call will

13

Modules

return the player object that departed.
• On Cutscene Abort Script – The field notes say this is

run whenever a player attempts to cancel a cutscene.
For example, see 'x2_abort_cutscene'.

• On Heartbeat Script – This is run every six seconds
while the module is active. In general it is
recommended that no heartbeat scripts be set to run
continually, or else they will impact performance. A
good practice is to minimize the script overhead,
usually by exiting early unless the game conditions
match the states you want to manage, or if it is
running at certain times on the game clock.

• On Module Load Script – This script is run each time
the module is first loaded. By default it contains
'x2_mod_def_load'.

• On Module Start Script –
• On PC Loaded Script – This is similar to 'On Client

Enter Script', except that you are guaranteed that the
PC can be assigned actions.

• On Player Death Script – This is run when a player
has died. The default script that is run here is
'nw_o0_death'. The GetLastPlayerDied() returns the
object of the dead PC.

• On Player Dying Script – Each time a PC falls below
zero hit points this script is run. By default, the
'nw_o0_dying' is run here. GetLastPlayerDying()
returns the object of the PC that triggered this script
to run.

• On Player Equip Item Script – This script is run each
time a PC equips an item. By default it runs
'x2_mod_def_equ'. GetPCItemLastEquipped() return
the item being equipped.

• On Player Level Up Script – This runs once a PC has
leveled up. The GetPCLevellingUp() call returns the
PC object.

• On Player Respawn Script – When a player clicks the
respawn button on the death dialog interface, this
script is run. GetLastRespawnButtonPresser() will
return the PC object of the player clicking the button.
By default this runs 'nw_o0_respawn'.10

10 If there is an object or waypoint with the tag

• On Player Rest Script – This is run each time the
player decides to rest. By default it is empty, but there
is a x2_mod_def_rest script that can be used here.

• On Player Unequip Item Script – Whenever a PC
unequips an item, this script is run. The default script
is 'x2_mod_def_unequ'. GetPCItemLastUnequipped()
will return the item that was unequipped.

• On Unacquire Script – This runs when an item is
removed from the inventory of a PC, such as when
the player drops an item. The 'x2_mod_def_unaqu' is
the default script used in this slot.

• On User Defined Event Script – This script will be
triggered by a user defined event (generated by a
EventUserDefined() call) that is sent to the module by
SignalEvent(). The module object is returned by the
GetModule() call.

• Variables – Use this to configure variables that are
applicable to the module. If the local integer
“X2_L_NOTREASURE” is defined and set to true,
the automatic treasure generation system (used in the
creature spawn in scripts) will be disabled.

Starting Area

This block contains information related to where the
module begins.

• Entry Area – When a starting location has been set,
this will list the name of the area where the start was
placed.

• Entry Orientation – These four numbers provide the
three dimensional orientation of the module start
point. Only the last two digits vary when the
orientation is varied on the x-y plane.

• Entry Position – This lists an {x, y, z} vector giving
the coordinates of the start location in the Entry Area.

• Start Movie – A 'Bink' movie file can be specified
here that will run when the module starts.

Time

This block is used to set chronological information for the

“NW_DEATH_TEMPLATE”, the PC will appear at that
location. See the chapter on Blueprints for information on
tags.

14

Modules

setting where your module or campaign takes place. These
can be left at the defaults unless you want to track the date
or modify the planetary parameters.

15

Areas

Areas
An area forms the playing surface that the party will travel

and explore. Each area contains either exterior or interior
terrain, and is laid out on a grid surface with fixed
dimensions that are set during area initialization. The grid
scale differs between interior and exterior areas, with an
interior grid square being nine meters across and an exterior
grid square spanning ten meters. The surface of an area can
be edited with textured terrain or tiles, water-covered
regions, and various structures, props, vegetation, creatures
and inhabitants.

Exterior areas can have obstructing terrain features and
obstacles that channel movement, while interior areas use
walls and doors to control flow. Within the game, the
player's map will show the resulting area in broad outline,
along with various map notes to point out key locations.
The game engine constructs this map from a top-down view
of the terrain features and any static or environmental
objects. Thus it will not show creatures, interactive objects
or environmental effects.

Typically at least one location in an area serves as a
transition to a different area. These transition points can be
the door to a structure, a cave entrance or just a location. A
module requires that a starting point be placed in one of it's
areas. This location is chosen from the toolbar and placed
like as object. (Once this is starting point marker is
positioned, the easiest way to select this object is by
clicking on the object's arrow head.)

An area can contain various hidden triggers and waypoints
that are used to control the spacial aspects of the game flow.
Thus a trigger is a region that activate certain events when
the players enter, such as revealing new map notes or
spawning a group of creatures to do battle. Areas can also
have various audio and visual effects to provide a suitable
atmosphere.

Editing
What follows is a summary of how to edit an area. The

specific editing techniques for exterior and interior areas
differ in several respects, so the unique details for each will
be covered in subsequent sections.

To create a new area, you can choose the New item under
the File menu, then pick Area from the submenu.
Alternatively you can choose the Areas tab on the A/C/S
Panel, then right-click with the mouse and pick Add. In
either case a dialog window will open that will allow you to
choose the basic properties of the new area. You can input a
unique area tag, choose whether it is an exterior or interior
area, then select the area size as a number of grid rows and
columns. The area will then be added to the A/C/S Panel
under the Areas tab.

The New Area Wizard interface

An area can be opened for editing by selecting it from the
A/C/S panel, then right-clicking with the mouse and
selecting Open from the pop-up menu.11 (The same menu
can be used to duplicate an area, change an area's name, or
remove [delete] an area.) After an interval the area will
appear as a tab in the Edit panel, and a rendered view of the

11 The Toolset will produce an error message if you try to open
more than three areas at once.

16

Editing

area will appear underneath. If the area includes the start
location, the view will open centered on the Start Location
object. Otherwise it will be centered on the middle of the
map.

Both interior and exterior areas use the same keyboard-
mouse controls to manipulate the position of the frustum, or
viewing box.

• Drag – holding down the Ctrl and the left mouse
button allows the view to be shifted about
horizontally by moving the mouse.

• Rotate – holding down the Ctrl and the right mouse
button allows the view to be rotated and tilted by
moving the mouse.

• Zoom – turning the wheel on the mouse will zoom in
and out of the view.

To close an area, select its tab from the Edit panel, then
right click over the tab and select Close [ctrl-C].

If certain features don't seem to be rendering properly in
the area, such as the bloom settings under the Day/Night
Stages (see below), try exiting the toolset and then running
the game normally. In some cases this appears to reset the
rendering engine and then the features may start rendering
properly again in the toolset.

Properties

Once an area is open for editing, selecting the area's row in
the A/C/S panel will display its properties in the Property
panel. These are divided into the Appearance, Environment,
Fog, General, Scripts and Sound blocks. The separate
blocks are described in detail below.

Appearance

This block controls how the area will appear as the game
clock advances.

• Day/Night Cycle Stages – This can be expanded to
display a lengthy set of parameters that can be used to
fine tune the area appearance at different points of the
day. It is primarily used for the external areas and will
be covered in more detail in the Day/Night Cycle
Stages section.

• North Direction – This determines the x-y direction

used for the game's compass north. You can view the
direction of north by selecting 'Show North' from the
toolbar at the top of the area's edit panel. This will
cause a compass to appear at the center of the area
map.

• Sky Ring... – these can be used to select the gray
backdrop that will appear along the four compass
directions of external area horizon. The main menu
categories are: large city, small city, forest, island,
mountains and none. You should preview these
backdrops early in the area building process to
determine how you will configure your border terrain
features to match.

Environment

This block has a set of boolean flags that control how the
visual appearance will be updated.

• Day/Night Cycle – If this is true, the area will
transition between the stages of the Day/Night Cycle
Stages as the game clock progresses. When this is set
to False, the area will remain at the 'Default' entry of
the Day/Night Cycle Stages.

• Directional Light Casts Shadow – If true then
structures and other objects cast shadows from the
direction of the Sun or Moon.

• Has Directional Light? – This will remove the
illumination from sunlight or moonlight.12 There can
still be ambient light and point light sources such as
torches or fires.

• Is Always Night? – If the Day/Night Cycle is set to
false, then the area is considered night if this is true;
otherwise it is considered daytime.

Fog
• Use Day/Night Fog Color? – The fog color can be set

for different points in the day/night cycle using the
expandable Day/Night Cycle Stages fields. If this field
is true then the fog color will update as time passes.

General
• Comments – This field can be used for comments that

12 Setting this property to false can turn off rendering of water
surfaces. However, see the Water Tool section.

17

Editing

will not be used in the game.
• Creature Cache – This field is used to select the

blueprints of creatures that need to be dynamically
spawned, such as by an area's On Client Enter script.
In reality it has little effect on creatures spawned in an
encounter, as the performance improvement may be
measured in milliseconds.

• Display Name – This is the name of the area that will
appear on the mini-map during game play. It is also
the name used in the A/C/S panel.

• Interior – If true, then the area is considered interior
for game rules purposes.

• Load Screen – this entry has a pull-down menu of
available screens that will be displayed when the area
is loading. The default is Random. Selection of many
other screen picks will cause a preview to appear at
the bottom of the menu.13 N2_Generic_Default gives a
panel with the Neverwinter symbol. The UserDefined
is used with the SetAreaTransitionBMP() call to
display a custom bitmap.14

• Modifier to Listen Checks – This is a circumstance
modifier to the Listen skill in this area. It may be
appropriate for a noisy environment.

• Modifier to Spot Checks – This is a circumstance
modifier to the Spot skill in this area. It may be
appropriate for an environment with consistently poor
visibility.

• Natural – If true, then the area is considered natural for
game rules purposes. Certain spells will only function
in natural surroundings.

• No Resting Area – Enabling this will prevent the PCs
from resting in the area by default. Selected resting
can still be allowed through scripting, which could be
used to make certain areas safe for the party. Note that
if this property is set to true, then the Module's 'On
Player Rest Script' will not be run.

13 The load screens are stored in the game install directory under
UI\default\images\donotatlas and donotatlas_x1. These files
are tabulated in 'loadscreens.2da'.

14 For example, this could be called from the ActionScript script
that is triggered by selecting a Map Point from a World Map.

• PVP allowed? – This controls whether combat is
allowed between players. Full PvP allows combat
between friendly and neutral characters; Party
Protected prevents members of the same party from
attacking each other, and Non PvP only allows
damage to be inflicted on enemies.

• Size – These are the grid dimensions as set during the
area creation process. Selecting the ellipsis will allow
the map to be extended or reduced along any side. If
the map is reduced, then the truncated grid areas will
be permanently deleted.

• Tag – This name is used to reference the area in
scripts.

• Underground – If true then the area will be considered
underground for game rules purposes. Certain magic
spells can only function above ground.

• Version – This field is disabled.

OverlandMap

These properties were implemented for the Storm of Zehir
expansion and are available after the toolset is patched.
Setting the OverlandMap field to true will turn an exterior
area into an overland map. There are online tutorials
describing the overland map features in detail, so it won't be
covered here.

• OverlandCameraDistance – The distance of the
overland camera from the map.

• OverlandCameraPitch – The vertical angle of the
overland camera.

• OverlandCameraYaw – The rotational angle of the
overland camera.

• OverlandMap – Setting this to true will make this area
an overland map.

Scripts

These fields are for various event handling scripts.

• On Client Enter Script – This script is run once the
party has completed loading into the area, and is the
preferred script to run for processing entering objects
(rather than 'On Enter Script'). The main routine must
be a function named 'StartingConditional' that returns
an integer. You can obtain the entering objects with

18

Editing

the GetFirstEnteringObject() call followed by repeated
GetNextEnteringObject() calls, until you get an invalid
object.

• On Enter Script – This script is run when an object
enters into the area. The object can be determined with
the GetEnteringObject() call. This script should not be
used for script operations that depend on the party
being present, as there is no guarantee that the full
party will be loaded at the time this is run.

• On Exit Script – This script is run when an object exits
the area. The exiting object can be determined with the
GetExitingObject() call.

• On Heartbeat Script – This script is run once every six
seconds, regardless of whether any PC is in the area.
The presence of a party can be checked at the start of
the script to avoid unnecessary overhead.

• On User Defined Event Script – This script will be
triggered by a user defined event, generated by a
EventUserDefined() call, that is sent to the area object
by SignalEvent().

• Variables – This field produces a dialog box that can
be used to preset variables that are local to the area.
The variables can be modified by a script.

Sound

This section is used to control ambient sounds, music, and
the acoustical effects. Note that you can supplement the
area's ambient sound set with the placeable Sounds found
under the Blueprints tab of the Selection panel.15

• Ambient Sound (daytime) – This field has a menu
with a variety of different ambient sound settings that
provide a background atmosphere for many situations.
The default is to have no ambient sound.

• Ambient Sound (daytime) volume – This setting sets
the volume of the daytime ambient sound to a value
between zero and 100. If you have the Ambient field
set to true under the Sound pick in the toolbar and you
change this from the default value, then the selected
ambient sound should kick in after a few seconds of
load time.

15 Set the sound object's 'Positional?' property to false and set the
other properties appropriately.

• Ambient Sound (nighttime) – This is similar to the
Ambient Sound (daytime) field, except it is applied at
night time.

• Ambient Sound (nighttime) volume – This sets the
volume of the night time ambient sound to a value
between zero and 100.

• Battle music – This field has a menu of musical tracks
that are played when the party is in a combat situation.

• Daytime music – This is the musical track that is
played during the day time when the party is not in
combat.

• Environmental Audio Effects – This menu pick
provides a variety of acoustical settings for different
physical environments. This will modify the output of
the various sound effects.

• Music delay – This field is a value in milliseconds
before a music track begins to repeat. A longer delay
may allow faint ambient sounds to be picked up by the
player.

• Nighttime music – This is similar to Daytime music,
except it is run during the night.

Weather

These became available after I patched the toolset.

• Chance of Rain – This is a menu that determines how
often it will rain in the area. The available options are
names instead of percentages.

• Power of Rain – When the rain is active, this
determines how intensely the rain falls. However, even
at the Stormy rain setting the precipitation may seems
like a mild downpour.

• Variation in Rain – The possible values are Large,
Medium, Small and None.

Objects

An area can contain any of the objects chosen from the
Blueprints tab of the Selection panel. Most objects have a
graphical representation that shows how it will appear
within the game setting, and a bounding box that is used for
detecting collisions.16 Note that the number of objects that

16 When editing a blueprint, make sure you haven't got a

19

Editing

appear together during the game will determine the
graphical performance. Clustering many objects together,
especially trees and non-environmental placeables, will
place more of a burden on the client's computer.

An object can be added to an area by selecting the row of
the appropriate Blueprint listing. A copy of the object will
then appear in the area's Edit panel and will follow the
mouse cursor wherever you move it. Pressing the 's' key
will toggle stacking mode, causing the object to move to the
top of any objects already in the area.17 To set a copy of the
blueprint in place, left click with the mouse. The original
object will continue to follow the cursor until you hit the
Esc key, thereby allowing you to place additional copies.

Selecting Placed Objects

In order to select objects, you need to click on the 'Select
Objects' tab on the toolbars (or press f2). There are several
methods for selecting objects:

• Clicking the left button with the cursor over an
object's bounding box will select it and deselect the
prior selection.

• Holding down the shift key while clicking objects
will add them to the current selections, or remove
already selected objects.

• When 'Drag Selection' is enabled in the toolbar,
holding down the left mouse button and moving the
mouse will create a selection rectangle that picks all
objects by their bounding boxes.

• Clicking entries in the Area Contents panel will select
the corresponding object in the area.

If you are having trouble selecting an object from amidst a
crowded field, you can either try zooming in closer, use the
filters in the toolbar, select the object from the appropriate
Area Contents list, or some combination of these.

When an object is selected in the view, the cut and copy

matching object selected in the area editor. This will cause the
local copy to be edited, rather than the blueprint.

17 Some objects may not stack exactly, and you will need to fine
tune the height. An example of this is the 'Table {Wood Rural
02 (X1) TINT}' placeable, where objects auto-stacked on top
need to be elevated by another +0.05.

operations in the edit menu items are activated. These allow
you to cut or copy the selection, then paste it at a new
location (including a different area). You can also use the
Delete key to delete the selected object(s), then use undo to
restore them back into their previous position. (You may
need to move the selected object first before it can be
deleted.) The redo item will revert the last undo.

Translation and Rotation

Selected objects can be moved about by left clicking
within their bounding boxes, then dragging the cursor about
with the left mouse key held down. For fine tuning an
object's position, you can use the arrow keys to move a
selected object horizontally in smaller increments; this
movement is with respect to the camera position, so you
may need to turn the view to get the motion you need.

As they are moved about, objects will adjust their vertical
position to remain on the ground or the appropriate distance
above it. (Use the Height Lock property to fix the height of
an object, or Position Lock to fix the location.) If you want
to raise or lower the selected objects by fixed amounts, hold
down the shift key and rotate the mouse wheel.

Objects can be rotated about their center with the shift and
right mouse key click and drag. If you have a number of
objects selected, each will rotate separately about its own
center. However, if you right-click and choose Group, then
the objects will act as a single unit during translation and
rotation. Note that setting the Position Lock property of an
object to True will not prevent it from being rotated. This
can be a real headache when you are rotating objects in a
crowded field and accidently select the wrong object.

At the top of the area edit panel is a set of tabs for
performing object rotations in 45° increments, or resetting
an object's orientation.

Modifying Object Properties

You can modify the properties of an object in the area by
selecting it. The object instance will then be displayed in the
Properties panel. If multiple objects are selected, only the
fields that have identical information will be displayed; the
remainder will be blank.

Note that while you are modifying a selected blueprint, a

20

Editing

copy of the object will follow the cursor around whenever it
appears over the Edit panel. While you are making your
edits, you will need to be careful not to click in the Edit
panel or press the Esc key.

Once an object has been placed in an area, it takes on an
existence of its own. Any changes you make to a blueprint's
properties will not be reflected by the objects you have
already placed. To synchronize a modified object with a
blueprint, you will either have to delete the existing object
from the area and place a new copy or else modify the
properties of the placed object. In the latter case, you can
locate discrepancies between an object and its blueprint
because the toolset converts the object's property text to
bold font where they differ.

There are two methods for creating a modified copy of a
blueprint. When a blueprint is selected in the Selection
panel, you can right click on the selection and select Copy
Blueprint. Alternatively, you can select an object in the area
Edit panel, then right click and choose 'Make Blueprint...'.
The blueprint copy will appear at the end of the current
node in the blueprint tree.

Exterior Areas
The ground for an external area can be reshaped to

resemble virtually any terrain. This flexible surface is
formed from a triangular grid that forms a flexible
wireframe mesh, allowing the altitude to be adjusted at each
grid intersection. The mesh is covered by a texture skin that
can be modified by applying various patterns to the surface.
To hide the terrain textures and only view the mesh, select
'Wireframe' from the toolbar.

When the 'Grid' option is selected from the toolbar, the
area is overlaid by a black grid pattern that forms an array
of 20-metre square tiles. These represent the rows and
columns of the tile regions that were input in the New Area
Wizard. The grid lines are important because toolset applies
certain restrictions to each tile, such as the number of
textures allowed, and these limits should be a consideration
when laying out your map.

The border of every exterior area has a region, two 20-
metre grid squares wide, that is used solely for decoration
purposes. In this framing region you create terrain and add
objects, but the PCs will not be able to enter here during the
game. This border can be used to give the area an illusion of
depth by displaying terrain features extending into the
distance. However, this border padding also means that the
number of row and column grids reserved for the play area
is four less than the Size that was input when the area was
created. Thus, an area with a width of 16 and height of 12
will only have a player-accessible area of 12 by 8, or 96
tiles.

The area of the surface that is accessible by the players is
indicated by a large white rectangle in the Edit panel view.
If the 'Occlusion Grid' option is selected in the toolbar, then
the sides of this rectangle will be visible through
intervening terrain features. Otherwise it can be blocked by
the line of sight features, such as ridges.

The surface of an exterior area is edited by a set of tools
that are available under the Terrain tab in the Selection
panel. These consist of the Terrain, Texturing, Grass and
Water tools. Each has its own set of parameters and options
that can be set when the corresponding tool is selected. The

21

Exterior Areas

tools can only be used on the surface when the Paint Terrain
option is selected on the toolbar.

The four terrain tools

When the toolset is run in Vista, these options may not be
displayed correctly, and the fields will appear to
overlapping each other. Per the NWN2 Forums Toolset
FAQ, this can be fixed by disabling the application's visual
themes as follows:

1. In the Windows Search box, type 'Windows Explorer'
and select the tool.

2. Find the NWN2ToolsetLauncher file in the game's
install folder.

3. Right click on the launcher and pick Properties.
4. Select the 'Compatibilities' tab.
5. Select the 'Disable visual themes' check box.
6. Click on 'Okay'.

The Terrain editor should display properly once the toolset
is relaunched.

Terrain Tool

When the Terrain tool is first selected with an external
area open in the Edit panel, the Paint Terrain option is
automatically selected from the toolbar at the top of the
toolset. If you use the Ctrl key and click to rotate or move
the terrain in the Edit panel, the Select Terrain will become
selected. Should you do a Ctrl right-click and drag to rotate
the frustum, then the Paint Terrain will be selected again
and the brush will reappear. (Thus two consecutive Ctrl
right-click rotations will return the brush.)

When the cursor is over the Edit panel with the Paint
Terrain mode selected, two concentric orange circles will
appear, showing the brush outline. The color of the circles
is determined by the tool selected, with orange for 'Terrain',
green for 'Grass', violet for 'Texturing' and white for 'Water'.

When the left mouse button is clicked or held with the
cursor over the Edit panel, the current Terrain Tool will be
applied to the surface under the brush. With 'Terrain'
selected, the brush can be used to modify the wireframe
mesh.

The terrain brush settings

The brush settings are configured in the Brush box on the
terrain tool. The Size slider control sets the radius of the
inner brush circle to an integer value. (It can be set to zero.)
The Outer slider control sets the distance between the inner
and outer circles. You can also manually enter digit values
in the Size and Outer input boxes, but the fractional part is
ignored. When the Flatten tool is selected, an additional
Height field is available. You can use a tab or shift-tab to
move between these fields; an enter will generate a warning
beep.

At the bottom of the brush section are four preset brush
sizes: S (small), M (medium), L (large) and G (giant). These
use the following dimensions:

Brush Preset Size Outer
S(mall) 1 2
M(edium) 6 6
L(arge) 10 10
G(iant) 15 15

The brush pressure setting determines the rate at which the
modification is applied to the surface while the left mouse

22

Exterior Areas

button is being held down. Pressures of 20% or less are
useful for fine changes, while 50% and up produce rapid
modifications. Within the inner brush circle, the full
pressure is applied to the surface. Between the inner and the
outer circles, the pressure decreases linearly with increasing
radius until it reaches zero at the outer circle. The tool's
effect is applied wherever the brush crosses an intersection
on the triangular mesh.

Patch 1.06 introduced several new hot keys for controlling
brush size and pressure:

Hot Key Effect

[Decrease brush size by 1
shift + [Decrease outer brush size by 1

] Increase brush size by 1
shift +] Increase outer brush size by 1

– Decrease pressure by 10%
shift + – Decrease pressure by 25%

= Increase pressure by 10%
shift + = Increase pressure by 25%

There are eight terrain tools, with five being used to adjust
the surface mesh.

• Raise – Steadily increase the height of the mesh.
• Lower – Steadily decrease the height of the mesh.
• Noise – Randomly modify the height of the mesh.18

• Smooth – Reduce the random variation of the mesh
height, effectively flattening the surface.

• Flatten – Set the height of the mesh to the Height.

With this set you can produce virtually any terrain contours
you could want to use for your adventure, with the
exception of overhangs. However, the terrain height is
limited to a range of -100 to 100.

18 The toolset help warns against using the noise setting across
tile boundaries because it can result in breaks between
sections. The Smooth tool can be used to repair the breaks.

The tools for modifying the surface contours

Note that the brush settings are stored independently for
each brush type, so switching between the tools can result in
a change of brush size.

Terrain editing

Producing a realistic terrain surface requires practice and
patience. Before you begin, it helps to have an idea what
you want to achieve. You could, for example, try sketching
out the coarse details of the area on grid paper so that you
know where to place different features.

A useful method for planning an area layout is to use the
Color tool to effectively "block out" the map.19 To do this,
select the Color tool then choose the color tint bar
underneath to set the hue. You should select a distinct color
with a high visibility, such as red, then paint that hue on the
map with a suitable brush size. Different colors can be used
to mark where the various roads, structures and features will
appear. Don't worry about cleanup at this stage; painting
over the surface with a white setting will remove the color

19 This is based on a suggestion from a NWN Forum discussion.

23

Exterior Areas

you added.

The shape of the surface you create will depend on the
type of terrain you want to build, whether rugged, eroded,
or modified by settlers. Areas covered in soil or sand should
be softly rounded, while rocky or steeply sloped terrain can
more uneven. Heavily used roads or trails can wear a
shallow depression into soft ground. Sea water should be at
the lowest elevations of the map, while lakes will form in
surface depressions and streams along gently sloping
gullies.

A natural rise can be constructed using the flatten tool to
create a series of terraces at the elevations you want to
achieve, then fine tuning the surface with the Raise, Lower
and Smooth tools. A similar technique can be used to create
a road that curves along a rise.20 Once a rough hill is
formed, a more natural appearance can be created by gently
adding in the effects of erosion. Water will always follow
the steepest slope downward, and will carve out a tree-like
pattern of channels that merge into larger stream beds. (See
nature photography books for some examples.) In rough
terrain this erosion will also sharpen the hill crest, creating
ridge lines that radiate outward from the peak.

An example of fine tuning the surface
to eliminate unnatural spikes and dips

Creating sharply rising ground can result in unnatural-
looking sharp points or divots in the surface mesh. These
features will become evident when running the module and
traversing the ground with a PC, although varying the
lighting with the Day/Night toolbar option can also help you

20 Typically, merchant roads will curve around terrain features
while military roads will go straight through or across.

find them. These terrain anomalies take patient work with a
small brush and low pressure to smooth out.

Structures

When planning where to place the buildings, note that the
typical building structures are going to be smaller than an
exterior tile. You can often fit several buildings in a single
tile grid. (However, see the section on Walkmesh.)

Most of the buildings and other placeable blueprints don't
work well with uneven surfaces. If an area is going to have
structures, the surface should be flattened at the locations
where the placeables will be inserted. For this purpose you
can use the Flatten terrain tool. With the Flatten tool
chosen, select the eyedropper and click on the patch of
ground where you want to place the building. This will set
the Flatten tool's height to the altitude of the terrain at that
point. You can then brush over the area to be occupied by
the building, and the surface will be set to that height.

An alternative approach is to select a building in the scene
and then choose 'Flatten Under' from the terrain tools. This
will set the Flatten tool's height to the base of the building.
You can then flatten the ground underneath the structure.
Note, however, that when a building's height is changed
from editing the surface, then the doors may not be set to
the proper height. You may need to manually fix this by
selecting the doors and moving them back into the openings
until they snap into position.

The Flatten tool can be useful for creating farming terraces
or a mesa/butte. If I want to create a rising slope for a road,
I can use the Flatten tool in a sequence of steps of steadily
increasing height to rough out the surface, then polish it off
with the Raise/Lower tools. A similar method can be used
to create a deep harbor for waterfront scenes. I also find the
Flatten tool useful for sinking the ground surface to a level
depth under a water-covered area.

Walkmesh

Part of the process for building an area is to determine
where the PCs will be able to travel on the mesh grid. This
is managed by using the Walk and Non Walk brushes in the
terrain tools, followed by a step called baking. When the
'Surface Mesh' is selected from the toolbar, some yellow

24

Exterior Areas

lines may appear along the sides of the triangular mesh
where the terrain rises sharply. These form the boundaries
between walkable terrain and non-walkable terrain. The
toolset will automatically make a mesh triangle non-
walkable after it reaches a certain inclination (or slope).
This occurs at a slope of about 45º.

The baking process is begun by selecting the 'Bake
Current Area' item on the File menu. This will cause the
toolset to run through a lengthy21 series of steps to process
the area. These include checking for placeable obstructions
and walk/non-walk regions, then computing what parts of
the map are accessible. The results of a bake can be viewed
by selecting 'Baked' from the toolset with the 'Surface Mesh'
activated.

Important: Baking an area is a required step. If you
neglect to bake an area, it will appear impassible to the
player and it may even crash the game.

In this example, the green triangles show the baked mesh, the
yellow lines and black triangles define the non-walkable
terrain, the thin white lines are the object collision
boundaries, and the two orange circles are the brush. The
blue lines show the currently active tile.

Unfortunately, baking an area can result in some

21 The time required depends on your PC hardware.

anomalies. In sections of the map where placeables are
crowded closely together, a bake can completely obstruct
movement. This is made visible by a white box around an
otherwise walkable location. After baking, it is a good idea
to check if any parts of the area have been blocked off in
this manner. To fix this problem, you may need to relocate
or eliminate some objects then bake again. If small, flat or
inaccessible static objects are not expected to obstruct
movement, then it can also help to convert these into
environmental object. (Environmental object also lower the
resources that are needed to run the game, thereby reducing
the memory and CPU footprint.) You can also change larger
objects to Environmental objects then paint their location
with the 'Non Walk' brush. Another option is to use the
Walkmesh Cutter, described in the Triggers section of the
chapter on Blueprints.

The white box appeared after baking, showing an open area of
the map that has become impassible. In this case, removing
the fountain (near top) then baking again fixed the problem.22

After the first cut at baking an area, I like to look it over

22 Here the problem could also be addressed by locking the curb
height settings, converting them to environmental objects, and
raising the ground under the curbs until the surface lies just
under the placeable's skin.

25

Exterior Areas

and check for areas of the mesh that permit player access
when those should actually be blocked off. An example of
this might be the water's edge or some part of the terrain
that you don't want the party to enter, such as swamp or a
lava field. This fine tuning can be done with the Walk and
Non Walk tools. When Walk is selected, the area under the
brush is converted to walkable. Likewise, Non Walk makes
the brushed area of the mesh impassible. These adjustments
should be performed with Surface Mesh turned on and
Baked turned off in the toolbar. Afterward, you will need to
bake again.

Texturing Tool

This terrain tool allows you to paint a pattern onto the
surface with the brush. It is the most artistic aspect of area
building, and will likely require some practice before you
achieve the look you want to accomplish. For this reason it
is helpful to experiment on a scratch area. This will allow
you to mix and match textures, fine tune the brush settings,
and try different approaches.

For the Texturing tool, the pressure setting determines the
maximum percentage of the existing texture that will be
replaced by a new pattern. Thus, 100% will completely
replace the current texture, while a 50% setting will allow
half of the prior texture to show through. Gradually varying
the setting can be used for blending between one terrain
pattern and another.

The texture pattern can be selected from the Terrain
Texturing section. This consists of a scrollable list of terrain
types that are subdivided into dirt, blight, grass, mud, wood
plank, cliff, desert, rocky, sand, snow, and cobble stone
patterns. There are also individual patterns for gold, snow
cobble, twigs, and plain white, gray and black. Here are
some suggestions for terrain use:

• Heavily sloping surfaces will usually be rocky with
some scree and twigs along the bottom. The cliff
textures are useful for steep slopes, with grass or dirt
accumulating at the flatter points. A blend of cliffs
can produce a more natural mixture, or the color tool
can be used for variation. (See Color below.)

• Well travelled paths will be worn, with patchy areas

of grass and mud. Likewise, an overgrazed area of
ground, or an area of tilled earth, will contain more
dirt than grass. In a medieval setting, cobbled roads
will be rare outside of settlements and ruins. A road
heavily travelled by carts will show parallel dirt or
mud tracks.

• An ocean tidal zone can have sand, stained rocks, sea
weeds, mud flats and exposed dirt or sand cliffs.
Rivers can have sloping banks with mud along the
sides and grass along the top. Islands in the river may
have piles of rounded stones around the edges.

• Deserts are not always covered in sand. They can
have barren, rocky areas and gullies where water may
sometimes flood.

• Forest floors are uneven because of roots and fallen
trees. In areas where the canopy is thin, the ground
can be covered in vegetation. Where the trees are tall
and the canopy dense, the ground will be brown from
decaying matter. There will be occasional lone rocks
and decaying tree stumps.

When a terrain pattern is applied to the surface, it repeats
itself in a repeating manner about five times per tile width.
This can result in an unnatural appearance when viewed
from afar, and you will need to use varying mixtures of
blended terrains to conceal this effect. Alternatively, you
can place objects or use the color tool to distract from a
repeated pattern. Textures are also applied unevenly to
slopes, with steep slopes causing the pattern to stretch out in
a less than natural manner.

At the bottom of the terrain panel is a Selection Table.
This shows all of the terrains that have been applied to a
terrain tile, and allows you to select a terrain you have
previously applied.

By default an area is covered by the TT_GG_GRASS_19
terrain texture. If you want to change the base texture to
something else, first select the terrain type to the new
pattern, then click on the 'Fill...' button. You will be
prompted to fill then entire area, then, if you click Yes, all
terrains throughout the area will be replaced. Warning: this
will eliminate any previous terrains you have set in the
region, and reset the number of selected terrain types in

26

Exterior Areas

each tile.

Individual textures can be replaced across the map by
using the 'Swapper...' tool. First, click on a terrain type in
the 'Selection (Advanced)' list. Next, selecting the swapper
tool will bring up a dialog interface. On the left side is the
texture type you are currently using under the 'Find:' label.
A new texture type can be selected from the 'Replace:' list
on the right. Clicking Replace will cause texture type in the
'Find:' column to be replaced by the texture type selected
from the 'Replace:' list in every tile.

After replacing the default grass texture a mixture of colors
and textures was applied, creating a muddy cliff-side road.

Grass and nature props will be added to provide depth.

As no more than six terrains be applied to a tile, you may
suddenly find yourself running out of patterns. For this
reason it can be a good idea to plan out what terrain textures
you want to use in an area. You will either have to limit
yourself to six terrains across an area, or else subdivide the
map according to what terrains you will use in various, non-
overlapping tile regions.

Regardless of what textures you have applied to the
surface, the last texture you use will take precedence over
the prior applications. If you want a highlight a particular
texture that you have already applied, you can paint over the

surface again with that texture at a suitable pressure setting.
This can be done repeatedly, allowing you to layer on
previously selected textures until you get the appearance
you want to achieve.

Color

The color setting in the Terrain Tool can be used to
modify the tint of the exterior terrain. It can enhance the
look of the surface texture, darkening details, enhancing
shadows under trees and grass, breaking up repeating
textures, creating aged surfaces and forming color gradients.
Colors are also useful for tinting underwater surfaces,
creating burn scars and adding mysterious stains.

After selecting this tool, you can adjust the color choice by
clicking on the Color button. Your color selection will be
displayed on the button. The pressure setting will determine
the rate at which the color is applied, and low settings can
be used to blend colors and apply subtle variations. Use
plain white to erase any colors applied to the terrain surface.

While using a small brush size to touch up the colors, you
may experience some unevenness in how colors are applied
to the surface. This occurs because the colors are applied at
the intersections of the triangular mesh, rather than along
the lines. Try placing the inner brush so that it is touching
one of the intersection points before clicking.

Water Tool

This tool can be used to create a simulated water surface
that displays a constantly changing wave pattern. Normally
you would place the water over a depression in the surface,
which you can create using the Terrain tool. With the Water
tool selected, the brush section of the Selection pane will
have a height field that determines the vertical position of
the water plane. You can only have one height assigned per
major grid square.

Changing the height field then clicking in a grid square
will cause all of the water in that square to move to the new
height. You can use this capability to create a drop across
grid boundaries, where you can place a waterfall using
suitable Placed Effects. You can also place lakes, ponds and
pools at different altitudes by putting them in separate grid

27

Exterior Areas

areas.

Under the brush section is a set of tools in a box labelled
Water. This shows the two primary water painting brushes,
paint and erase, that can be used to apply or remove the
water surface, respectively. The color box determines the
hue (H), saturation (S) and brightness (B) of the water.
Underneath are several controls that manipulate the basic
properties of the water:

• Ripple X/Y – These control how much the water
distorts the underlying surface in the X and Y
directions. When they are both set to zero, the
underwater scene is clearly visible.

• Smoothness – This determines the height of the
waves, with a smoothness of 1 being completely flat
and free of waves.

• Refraction/Reflection Bias – Unknown.
• Refraction/Reflection Power – Unknown.

Underneath is a set of three water layers. The appearance
of the water is a composite of the three layers, allowing you
fine control of the wave movement direction and speed. For
a river you will likely want the wave movements to trend
downstream, while an ocean or lake will use more random
directions. Each layer has two textures, with the first being
for a rougher surface and the second producing a more
placid wave motion.

Once you have a water surface that you like, you can use
the Export button to save it to a file, then Import it later for
application in another area.

Note that setting the Area's 'Has Directional Light?'
property to false will turn off rendering of water surfaces,
except in the grid squares that are within the illumination
radius of a point light source. Setting the Intensity property
of a light to zero will remove this illumination, but will still
cause the water to render. Thus a single light source with a
sufficiently large Range and zero intensity can cause all
water surfaces to be rendered.

You can create a water-filled trough by adding the
placeable to the scene, then using the Water tool with the
appropriate height setting and a small brush. You will need
to Paint the water inside the fountain then clean up around
the sides with the Erase brush. With rounded forms such as

the fountain, it can be tricky getting it to look decent, so you
will need some patience. (Alternatively you can place a
circular surface with a single click then scale the placeable
to fit.) For less opaque water, try reducing the brightness
(B) value of the Color.

Grass Tool

This tool is used to provide low vegetation to the surface
at a cost in extra processing power. Grass can make the
landscape appear flourishing and alive, giving it greater
depth and interest.

The gently moving grass stalks and leaves are displayed
on a series of planar surface placed at various angles to each
other. Viewed from above this may seem slightly artificial,
but at a low angle it creates a more believable effect. The
available fauna types are divided into several short and tall
grasses, along with wheat, weeds, reeds, cattails and a few
snow growths. The types can be mixed together or placed
separately by selecting textures from the list.

The options panel allows you to adjust the size and
variation of the selected grass. You can also mix different
sizes in the same grid square, so you can combine young
and mature growths. For finer control, you can select a
smaller brush and use a lower density to apply the grass.
Larger blade sizes can be useful for quickly laying down
grass in background areas and border grid squares where the
player doesn't have access. Large blade sizes combined with
tall grass can also be used to create a field of high grass;
which is convenient for concealing small opponents.

Each grid square will only allow you to place a fixed
number of grass growths, so they need to be used
judiciously. Fortunately there is an erase tool that allows
you to trim the number of growths so you can better locate
the limited numbers. The proper amount to use depends on
the surface you are trying to simulate, and how much of the
underlying terrain you want to remain visible. Using the
minimum amount of grass needed will also keep your
module file from growing excessively. If you do need to
create a region with thick grass, try placing it at the
intersection of grid squares to allow you to used part of the
quota from each square.

28

Exterior Areas

Grass can be applied sparsely by judicious application.
Denser stands of grass will typically grow where there is
less traffic, so the areas around fixed objects such as fence
posts, structures and boulders are good targets. The player
will typically see raised areas before depressions, so placing
grass on top of mounds and ridge lines is a good way to
break up the sharp edges. To create a realistic patch of
grass, I like to scatter short grass in a roughly circular patch,
then put a mound of taller grass in the middle. Reeds are
good for softening the outline of a pond, and these can be
enhanced with lily pads placed just above the water level.
To give a rural house a human touch, try scattering a few
clumps of flowers to form a small garden.

Objects

Docks and Bridges

Walkable docks and bridges require special care. You
don't need to modify the default Properties for these
placeables to allow characters to walk across them, but you
will need to make sure that the full length of the entry sides
are located within a certain distance the ground. Otherwise,
the placeable can instead be made an impassible feature
during a bake.

For a bridge, the ground at each end must be at about the
same height as the vertical position of the placeable. You
can make certain of this by using the Flatten feature of the
terrain tools with a small brush size. The ground in between
the two ends can be any depth as long as the bridge ends are
touching the surface. Unfortunately this means that you can
not string bridge pieces together unless you put level ground
along the line where the bridge pairs join; essentially
creating narrow rises at the bridge joins. However, you do
have some leeway in the height of the ground. This allows
you to set the water height -0.1 below the bridge height,
then the intermediate rises to -0.2. Unfortunately this
doesn't look very realistic.

An alternative approach is to use the slum docks placeable
as a low quality bridge. These can be joined together at their
ends and they will bake properly. They need to be lowered
about -1.5 so that the ends do not stand above the ground.

Unfortunately dock pieces have a similar problem to the
bridge pieces, and even on level ground there is no
guarantee that multiple pieces can be joined end to end and
still allow the full length to be walkable after a bake. You
are limited to either: (1) using the large dock piece, (2)
making a dock out of the slum dock pieces, (3) using the
Walkmesh Helper (described in the next section), or (4)
repeatedly making fine adjustments followed by another
bake. The latter can prove tedious and frustrating.

Other alternatives for waterfront features include inserting
a length of raised curb or else using stone wall segments
that have been lowered to serve as a breakwater. For the
latter to work visually you will need to craft the height of
the terrain along the edge so that it drops off sharply.
(Roughly a height difference of 10 between the smallest
grid nodes gives a decent look.) With careful work this can
result in the appearance of a deep-water harbor. Don't forget
to add posts for the ships to tie up. If the rural fence posts
don't work for this purpose, try scaling a copy of the obelisk
to 50% of size and 30% of the height, or scale the stone
wall post down to 30% of normal size.

Wall sections used to produce a river breakwater dock

Walkmesh Helper

Under the Misc Props category of Placeable blueprints are

29

Exterior Areas

a pair of objects named Walkmesh Helper. These are
invisible surfaces that characters can walk across.
Walkmesh Helpers can be used to address baking problems
with multi-part docks and bridges, or to create an invisible
crossing. Thus, for example, it could be used to create a
magical bridge across a canyon, or a walk-across-the-water
effect.

The base Walkmesh Helper is a small rectangle at ground
level, but it can be increased in size by modifying the Scale
field in the Properties panel. There is a Walkmesh Helper
for a wooden surface and another for stone, allowing you to
choose the appropriate tread noise for the crossing
character.

When this object is being used to provide a crossing
surface over a bridge or dock, the latter objects should first
be converted to an Environmental Object. (Select the
placeable, right click then choose 'Convert > Placeables to
Environmental Object'.) This will prevent the baking
operation from becoming confused. Next, the Walkmesh
Helper should be placed just above the bridge or dock, then
scaled so it fits the walkable section. (It may help to set the
C2 Data on in the Collision toolbar menu so that you can
see how things line up.) When you do a bake, the surface
will now be walkable. But you may need to appropriately
modify the walk mesh around the Walkmesh Helper or you
may find the PC walking off the bridge and into the water.

Now rumor had it that the Walkmesh Helper is stackable.
However I ran into problems during the bake when I tried to
stack two of these items at the same height. The alternative
is to use a single large Walkmesh Helper in combination
with Walkmesh Cutters from the Trigger blueprint. The area
above the Walkmesh Cutter will be cut out of the walkable
area during the bake. You could use this, for example, when
making makeshift, irregular-shaped bridges.

Day/Night Cycle Stages

The area properties include an expandable field called
'Day/Night Cycle Stages'. This is divided into seven
expandable rows covering intervals of a day, plus a default
row for use in cases where the Day/Night Cycle is set to
false. The DayNightStage[] Array field ellipsis allows you

to read in a Day Night Set File. Each expandable row
contains the following fields:

• Bloom – The five bloom settings control the glow
surrounding small sources of light, such as a gleam
reflecting off metal. This can be used to make a light
source appear brighter by spreading it out. However,
bloom is processor intensive so it should be used
judiciously.

Bloom Highlight Intensity at 0.54 (left) and 2.16 (right)

• CloudCover – This is a decimal value between 0 and
1.5 that determines the amount of clouds that appear
in the sky. Lower values produce greater cloud cover.

• CloudMovementRateX – This decimal value sets the
cloud movement rate in the default east-west
direction, with positive values causing movement
toward the west. Unless the weather is extreme, you
will likely want values of 0.1 or less.

• CloudMovementRateY – This decimal value sets the
cloud movement rate in the default north-south
direction, with positive values causing motion to the
south.

• DesaturateColor – If true then desaturation is active.
• DesaturateFactor – If DesaturateColor is true, then

this value controls the amount of leeching of the color
while the game is running. It can range from 0.0 to
1.0. To produce a shadow plane effect with almost no
color, try turning off the Day/Night Cycle then set the
DesaturateFactor value to 0.1 under the Default
DayNightStage[] array entry.

• Fog – The game's fog feature can be used to control
the range of visibility in an exterior area, reproduce
atmospheric haze and, sometimes, to set a particular
mood. The expandable fog field determines the
thickness, color and distance. The fog's tint is set

30

Exterior Areas

using FogColor. The fog will start to appear at a
distance FogStart, and reach maximum intensity at
FogEnd. To increase the fog density, decrease the
FogStart and FogEnd values.23 Beyond the FarClip
distance, the scene will be completely obscured by
the fog (thereby reducing the computer's graphics
workload). Typically you would want this clipping to
occur beyond the FogEnd distance.

• Ground Light – This expandable field determines the
illumination of objects using the Diffuse Color setting
at a brightness equal to the Intensity. An Intensity of
zero eliminates this lighting.

• ShadowIntensity – This is a decimal value between 0
and 1 that determines how dark the shadows appear.
Low values can be used to simulate the effect of
cloud cover, for example. A value of one gives
completely black shadows, while setting the field to
zero will eliminate the shadows. Lower values, closer
to zero, will make the game run more smoothly.

• SkyDomeModel – This field can be used for an
model file (.mdb) that will modify the appearance of
the background sky dome. Some examples are the
fx_skydome_* models included in the first (X1)
game expansion. (You may need to close and re-open
the area to see the new effect.)

• SkyHorizon – Unknown.
• SkyLight – This expandable field determines the

ground surface illumination. The lighting uses the
Diffuse Color setting at a brightness equal to the
Intensity. An Intensity of zero eliminates this lighting.

• SkyRingColorInterpretation – This decimal value
determines how quickly the sky color transitions
between the horizon color and the zenith color with
increasing altitude angle. Larger values result in a
more rapid transition.

• SkyZenith – This sets the color of the sky direction
overhead. The color of the sky dome gradually
transitions to this color with increasing altitude angle.

23 Setting them equal makes an odd hole-in-the-cloud effect.
You can have FogEnd less than FogStart, but it looks
unnatural.

• SunCoronalIntensity – The corona is an area of
diffuse glow surrounding the Sun. It can be seen
when the Sun is low on the horizon. Typically this
decimal field has a value of 0.33. Values of 1.3 or
larger can make the glow wash out the Sun, giving it
the appearance of a giant star. (For the Moon you
need a value of 5 or more to achieve this effect.)

• SunMoon – This expandable field sets the color of
the Sun/Moon disk to the DiffuseColor, as well as the
color of the corona and the reflected glow from the
illuminated surfaces and the clouds. The Intensity sets
the brightness of the lighting. If SkyLight is set to a
low intensity, this will also determine the color of the
ground illumination.

• SunMoonDirection – This sets the direction of the
Sun or Moon. Clicking on the ellipsis will open up a
dialogue that can be used to manipulate the direction.
The area scene in the Edit panel will be updated in
real time as you maneuver the white arrow about,
allowing you to see the effects of the shifting Sun or
Moon direction.

31

Interior Areas

Interior Areas
The surface of an interior area is formed by a set of 9-

metre square tile patterns that are laid out on a grid. These
tiles are selected from a fixed menu of available forms. It is
not possible to modify the height of the surface mesh as can
be done with an exterior area. However, the tint of many
tiles can be modified, and water surfaces can be added.

Tiles

Upon creating a new interior area, the tile grid will be
completely filled with black boxes. It is helpful at this point
to activate the 'Occlusion Grid' in the toolbar, thereby
displaying the tile boundaries. The available tiles can be
found under the Tile tab on the Selection panel. This in turn
has separate tabs for Tiles and Meta Tiles; the latter are
unique forms that can fill multiple tile squares.24

The available tiles come in eight styles:

• Standard Interior – Various wooden building interiors
with multiple ceiling, wall and floor textures.

• Standard Castle – A stone interior with a single
surface style. There are also a few meta tiles.

• Crypt – A set of dingy underground tiles with
columns and hanging chains.

• Standard Mine – By default these tiles have dirt sides
and wooden supports.

• Caves – These are intended for a natural stone cave
system. Some tiles include depressions that can be
used for pools, and there are several meta tiles.

• Illefarn – A stone interior with masonry walls that are
slightly curved and bevelled.

• Shadow Fortress – A green-tinged stone interior with
two floor levels, allowing water-filled areas. You
may need to cycle through the tile variations for the
elevation you need. Note that the open floor tile only
has one variant: the lower level. Thus the upper level
is at most two tiles wide. There are several meta tiles

24 Some Meta Tiles may require a several seconds to load into
memory from disk. The toolset may appear to be hung while
this is happening.

available.
• Sunken Ruins – A dingy stone interior with two

levels and gutters along the sides. You may need to
cycle through the tile variations for the elevation you
need. Note that some of the stair variants allow you to
connect the two levels.

• Estate – A marble interior with plain, columned or
windowed sides. Various shades of gray tints produce
different stone types.

The tiles listing. Blue lines represent walls, red rectangles are
doors, light blue dots are columns or corner pieces, and gray

lines are open sides. Note the 22 variations of '2_Walls'.

To view the available tiles, click on the '–' icon next to the
tileset name. This will expand into a list of the standard tile
forms. The type column with show the basic profile of a
tile, with some combination of light blue dots in the corners
for pillars, solid blue sides for walls, red rectangles for
doors, and an up or down arrow for stairs. The standard
interior and estate tile sets also include roof tiles, which is
the black box that initially fills the interior area.

32

Interior Areas

For the purposes of demonstration, try clicking on the
'2_Walls' tile under the standard interior set. This is an L-
shaped corner wall about 3/4ths the way through the list.
When you move the mouse over the Edit panel, the tile will
appear in the grid cell under the cursor. Pressing the left and
right arrows (or right clicking the mouse) will rotate the tile,
while pressing the up and down arrows will switch between
the tile variations. The number of available variations is
listed in the same row on the Selection panel.

When you left click in an interior area, the currently
selected tile will be placed at that grid cell. You can do this
repeatedly, placing the same tile in multiple cells by left
clicking and then moving the cursor. (If there is an existing
tile in a cell, it will be overwritten by the selected tile.) By
rotating the tile with the arrow keys, you should be able to
use the corner piece to build a 2 × 2 room.

Within the game, a tile wall will only appear when the
player views the tile border from that side. Thus, to build a
two-sided wall you need to place a wall on either side.
Otherwise, within the game you will have a see-through
wall. The doorways are similar in that you must have a
matching door opening on each side of the grid face (but
you will only need a single door per opening).25

An interior wall before and after adding the corner cap.
Note the multi-colored hook points along the walls.

The corner columns can be used to create a cap-piece at an
obtuse bend in the wall, which will seamlessly join two
right-angled wall segments together. (If you don't complete
this step, a gap will show at the bend during the game.) To
build an interior column at the joint where four tiles meet,
all four tiles must have a column located at the corner where

25 The doorways do not come with doors, so you will need to
add them in a separate step.

they intersect. Failure to do this will result in a gap along
one or more corners of the column. (Thus, for example,
filling a two-by-two room with '2_Walls_1_Corner' tiles
[properly rotated] will result in a column at the center.)

By default an interior area has the 'Day/Night Cycle'
property set to false, so the lighting is determined by the
Default entry of the 'Day/Night Cycle Stages'. When the
'Has Directional Light' property is set to true, you can vary
the general lighting level by modifying the Intensity value
under the SunMoon expandable field in the Default fields.
Thus, for example, you could change the Intensity from 1 to
0.5 or less, giving the area a gloomy appearance.

Tile Properties

In addition to the tile variations, you can modify the
appearance of many placed tiles individually by varying the
surface textures and tints. These variants can be used to give
an interior area a distinctive appearance with a consistent
theme, or to vary the look in an area.

You can modify groups of tiles by holding down the shift
key and left-clicking the tiles, then modifying the properties
in the Property pane. However, this will only work if the
selected tiles were already using the same textures and tints.

Varying the textures and tints can produce
unique appearances from the same tile set.

When you select a tile in the Edit panel, the properties of
the tile will appear in the Properties panel. These are

33

Interior Areas

subdivided into Appearance and Misc blocks. Each can be
contracted or expanded using the small plus/minus box at
the left of the header.

Appearance
• Ceiling Texture – These are the textures that will

appear during the game when the character is looking
skyward from an interior area. There are several
StdRoof textures that are intended for the Standard
Interior tiles, a variety of other textures for the other
tilesets.

• FloorTexture – These are the surface textures that
appear on the interior ground. Using a non-standard
floor texture can give your area a unique appearance.

• TintFloor – Some of the floor textures are tintable.
You will need to experiment to find out what parts
the textures change with each color. Some floor
textures will not display properly with certain file
sets.

• TintWall – This is similar to the TintFloor, except the
tint is applied to the wall textures.

• WallTexture – These are the surface textures that
appear on all of the tile's walls. Note that some of the
wall textures don't have valid window textures.
(Examples: StdWall07 and StdWall08.)

There are issues with certain combinations of textures and
tile sets. For example, the Illefarn01 texture does not map
properly with the Standard Interior or Standard Castle.
Other textures will appear with a multi-colored “2D
Missing” message, as with StdFloor03 on a Standard Castle
tile. Finally, certain textures will not tint, such as the
StdFloor03 in the Standard Interior tiles and the
SunkenRuinFloor01 texture with any tile set. The Shadow
Fortress tiles will allow you to alter the WallTexture, but
modifying the FloorTexture has no effect.

Misc

Most of the fields in this block can not be edited.

• HookContainerMoved –
• HookedObjects –
• HookPoints – This displays the hook points for

interior walls. The list can be viewed but not edited.

• UVScrollFloor – Setting the Scroll field to true in this
expandable field will make the floor surface scroll at
the rate set by the U and V parameters.

• UVScrollWall – Similar to UVScrollFloor but
applicable to the walls. It applies to all sides of the
tile.

Layout

The organization of an interior area will depend on the
function it is intended to server. For a realistic building,
there is typically very little internally wasted space, so the
rooms and corridors are placed next to each other with no
large gaps. (An exception is when a black 'Roof' tile is
placed to accommodate a stairwell or multiple fireplaces.)
The internal walls of a physical building are used to support
the upper structure, and large open volumes may need one
or more columns in the middle.

In an underground area, the upper surface is supported by
the surrounding rock and dirt, and there will typically be
many grid squares filled with black 'Roof' tiles. A natural
underground layout will lack the rectangular shape of a
building, so it may help to begin with an area that
intentionally has excess space along the sides. That is, you
should deliberately create an area with more space than you
think you will need. This will allow you to make the final
layout less boxy, because you will not be as constrained by
the edges of the area.

When an interior area is being explored within the game,
the player's map will only display the rooms and corridors
that can be accessed via an open path from the location of
the player. Any closed doors will block this path, so if you
want an area to remain hidden until it is explored, then you
need to add an opaque door with it's Door State set to
closed. A barricade across a door opening will not hide the
area behind; nor will a gate door.

During an area transition, the player will experience a
brief delay as the new area is loaded. For multiple areas
within a single building, you can avoid this delay by placing
the different floors within a single area. These floors should
be separated from each other by at least a single row or
column of 'Roof' tiles, and you should make certain that

34

Interior Areas

transition tiles have matching orientations. That is, an up
stairwell that rises toward the north on the lower floor
should link to a down stairwell that descends toward the
south on the upper floor. If you don't follow this pattern,
then the players may need to rotate their view 180° each
time they make the transition.

This interior area consists of three levels that are linked
together by stairwell pairs 'A-A' and 'B-B'. The top floor

is at upper left and the bilge is at lower left.

Objects

Many of the placeable blueprints under the Manmade
Props classification are suitable for adding decorations,
furnishings and containers to interior areas. Balconies are
useful if you want to add an elevated section to a room,
while the estate tileset placeables are styled to match the
Estate tiles. For prisons, try using the Jail placeables. Many
of the nature props are suitable for use with the Caves and
Standard Mine tiles, particularly those with TINT in the

name. The latter allow their coloration to be modified to
match the surrounding tile textures.

As with outdoor areas, you will need to bake an interior
area before you use it in a game. In some cases the
placement of objects in the area can result in grid blocks
becoming impassible. In this case you will have to relocate
or remove some objects, then try baking again. My
experiences has been that placing objects closer to walls
helps alleviate these types of problems, and this also
improves path finding during the game. Another method to
reduce blockages is to convert flat placeables into
environmental objects. Examples of such surface placeables
include the floor, floor mat, rug and tarp. Other placeables
that can be converted to environmental objects are those
stacked on top of other objects, or placeables located behind
barriers.

In this warehouse scene, a complex surface mesh of crates and
palettes has been replaced by a single, dark blue Walkmesh

Cutter region. This allowed the grid square to bake properly.

You can use the Walkmesh Cutter, described in the
Triggers section of the chapter on Blueprints, to block off a
region containing multiple environmental objects. Typically
this will be used to mark as impassible a complex area filled
with many placeables. The objects to be included in the
Walkmesh Cutter area should be converted into

35

Interior Areas

Environmental Objects so that they are not included as part
of the bake. For raised surfaces such as a wooden balcony,
however, you will not be able to view the Walkmesh Cutter
outline as you are marking around the placeables. Instead,
the cut area will only become visible once you perform a
bake. Hence, it may take several attempts to get it right.

During a game, the player's map will only display static
features. Thus you don't need to worry about concealing
creatures and usable placeables. However, there are times
when you may want to keep the true nature of a room
concealed until the player reaches that location. One way to
do this is to cover a grid square with a static object that is
elevated above the player's viewing area. For example, you
could position a 'Floor {04}' placeable (under the Manmade
Props) at an altitude of, say, +100.0 above an identical
placeable on the floor, then group the two placeables
together so they don't drift out of alignment and convert
them to environmental objects. Any static objects placed on
the lower Floor placeable will be concealed on the player's
map. Other floor coverings, such as rugs, can be employed
to similar purpose.

A more drastic approach is to use a 'Tile Block' placeable
and scale it to cover a section of the map, such as a secret or
concealed room. (You could always add a map note to mark
the location on the map after discovery.) A third option is to
use the 'Lid' placeable from the Estate tileset in the
manmade props.

Water

The Water tool under the Terrain tab can be used to add
water planes to an interior area. First, make sure that the
Water setting is active in the toolbar. Next, select the water
tool under the Terrain tab of the Selection window and
modify the height to the desired level. For an underwater
pool you will probably want to use a high smoothness factor
such as 0.98, and low scroll rates. For less opaque water, try
reducing the brightness (B) value of the Color.

Certain tiles have build-in depressions that can be used for
small ponds, such as variant number 5 of the '2_Walls' tile
in the Caves set. Both the Shadow Fortress and Sunken
Ruins tile sets have variants that allow a lower floor level

for use with a pool. The Sunken Ruins tile set includes
gullies along the walls where you can put a water layer.

A grim scene at an underground pool. The water has been
given a red tinge to represent blood from the floating corpse.

Another use for water in an interior area is to simulate a
polished floor on tile sets such as Estate. For this purpose,
set the Smoothness to 1 and the height to a small fraction
above zero (such as 0.02). For the Color, white will provide
an untinted, semi-translucent surface. Certain flat placeables
may need to be elevated to the same altitude as the water
plane so that they appear to rest upon the floor surface. Note
also that a water surface will not display shadows and will
conceal the outlines of traps.

Within the game, water surfaces require a minimum level
of illumination before they will render. If you have the area
lightning set to a low intensity, you may find grid squares
where the water surface has vanished. You can correct for
this by providing point sources of light, or turn on the 'Has
Directional Light?' setting.

36

Blueprints

Blueprints
The blueprints are a set of objects that can be positioned in

an area using the toolset, or generated by a script or a
trigger mechanism during the game. To view the blueprints,
select the Blueprints tab at the bottom of the Selection
panel. The blueprints are organized into categories based on
how they are employed within the game. These categories
are listed in a tool bar at the top of the Selection panel.

The available blueprint categories

The blueprints categories are used as follows:

• Items – These are moveable objects that can be
placed in a creature's inventory, such as various
armor, shields, weapons, potions. Items are usually
found in the inventory of a creature or container, but
they can be obtained from a store or provided as a gift
during a conversation.

• Creatures – These dynamic objects function as
creatures within the game. They can be configured to
interact using a conversation, and serve as allies or
opponents during combat. Creatures can carry and
use items.

• Doors – Various placeables and interior tiles have
openings where a door can be inserted. These can be
used to control movement between rooms or different
areas. Static doors serve as decoration.

• Stores – These non-visible objects are used to manage
the buying and selling of items. They are usually
activated through a conversation with a creature, and
can include a variable inventory of items. The store
settings determined the price at which items are
bought or sold.

• Placeables – This is an extensive list of objects that
are used for buildings, walls, bridges, balconies,

containers, furniture and decorations. Typically they
serve as obstructions that channel movement. Some
placeables can be containers that can be locked and
trapped.

• Triggers – This is a non-visible region in an area that
is used to activate an event when it is stepped upon
by a creature. They can be used for traps or area
transitions, for example.

• Encounters – These blueprints are used to create
creatures that will spawn once the PC enters a trigger
region on the map. The encounter properties control
the numbers and types of creatures that will appear.

• Sounds – These are various sound effects that can be
placed at specific locations and heard within a given
radius. They are mainly used to provide atmosphere
to the game.

• Waypoints – These are invisible location markers on
an area. They can be used as destinations for area
transitions, as map markers, and as places for NPCs
to travel.

• Static Camera – This hidden object creates a marker
that can be used to display a particular visual
viewpoint during a conversation.

• Lights – These objects can not be seen directly, but
provide point sources of illumination. They can be
combined with certain placeables to give the
appearance of a lantern or glowing object. You can
control the intensity, color and periodic variation of
the light.

• Trees – These are randomly generated foliage that
provide the appearance of a tree or bush.

• Placed Effects – These are dynamic visual effects that
can be placed in an area to create points of interest.
They can be used to simulate magical or natural
phenomenon.

• Environmental Objects – These are placeables that do
not interact with creatures during the game. They take
less game memory and CPU processing than other
object types.

37

Blueprints

• Prefabs – These blueprints are pre-built groups of
placeables that can be inserted into an area for various
purposes. They are intended as a time saver while
building an area.

When a blueprint category is selected with a left-click, the
available selections are arranged in a structured tree list that
has a series of expandable nodes. To show the contents of a
node, click on the small '+' icon to the left of the node name.
Clicking on a '-' icon will contract the node. Note that some
nodes can also have several sub-nodes.

A new blueprint can be created by right clicking in a blank
part of the Selection panel (or on a tree node) and choosing
“Create Blueprint” from the pop-up. If you prefer to make a
modified version of an existing blueprint, select the
blueprint line, right click and pick “Copy Blueprint”. The
copy will appear at the bottom of the same tree node in bold
text. You can save a blueprint for use in other modules or
campaigns by selecting the blueprint line, right clicking and
selecting “Save to File...”, then saving it to the 'override'
folder in the NWN2 directory under your local documents.

Once a new blueprint has been created, it's properties can
be adjusted to suit your preferences. You can modify these
by left-clicking the blueprint and choosing the 'Properties'
tab in the Properties panel. Alternatively, right click on the
blueprint and select “Properties (new window)”. This will
open a separate window with multiple tabs along the top.
Many of the properties appear in multiple blueprint
categories. However, not all of these properties are used in
all blueprints.

The following sections provide details on the various
blueprint categories in the order that they are listed in the
Selection panel. The environmental objects are not
described in detail. These can be used to define placeables
that do not need to be converted into environmental objects.

Items
Items are objects that serve as equipment for creatures in

the game. Each item has a Base Type that determines how it
can be utilized. The blueprint list groups the available items
under nodes by their respective Base Types, with the node
names giving some indication of their general purpose. At
the top level, most items are organized under the Armor,
Miscellaneous or Weapons nodes, which are further broken
down by sub-type.

When an item is acquired, it is moved to the PC inventory
where it is represented by an icon. From there, selected
types (such as armor or weapons) can be placed into
specific slots in the character's "Paper-Doll" equipment
chart based on their Base Type. Hence, an item with a Base
Type of 'Armor' can be placed in the player's armor
inventory slot.

The unique properties of some items only become active
once they are in an equipment slot, while other items only
need to be in the character's inventory. Certain item types,
such as ammunition or healing kits, become expended after
use. These have a stack size, which determines how many
identical items can be stacked together in a single inventory
slot.

Items can be customized by setting their name, icon, cost,
description, unique properties, and the material from which
they are formed. Selected item types may display a visual
model within the game world when they are placed in the
appropriate inventory slot. For example, the armor model
can appear about the body of a character when it is moved
into the armor slot. The appearance and color of these item
models can be fine tuned by selecting the appropriate tab of
the blueprint properties.

Magical items can have a description and properties that
are not immediately apparent to the player. To determine
these properties, a PC must either have ranks in the Lore
skill or else use an Identify spell. After an item is identified,
an examination of the item will display the revised the
description changes and list the properties. These properties
may be set to be constantly on, or they may have limitations
on their use, such as a certain number of times per day or

38

Items

the expenditure of charges. If an item uses charges, it is
destroyed once all of the charges have been spent. For
information about the standard magic items that are
delivered with the toolset, see the 'Named Items' section of
the second volume.

Items that are essential to the progress of a game can be
flagged as Plot items. This will prevent the item from being
sold. Harmful items can be flagged as Cursed, which will
prevent the item from being dropped from the inventory
(but will not prevent it from being sold).

Properties

With an item selected, the Properties tab of Properties
Panel will display a list of parameter names and values.
These are subdivided into Appearance, Armor, Basics,
Behavior, Misc and Scripts blocks. Each can be contracted
or expanded using the small plus/minus box at the left of the
header.

Appearance
• Appearance (special effect) – this field can be used to

give the item a special effect when it appears in the
game world. For example, a sword can be given a
flaming edge.

• Container UI Screen – All standard toolset items use
the Screen Container Default setting. Changing this
does not appear to impact the game.

• Icon – This menu contains a long list of icons that
will be used when the item is viewed in a PC's
inventory. This is a long menu with a lot of graphics,
so expect it to scroll slowly, move in jerks and even
to appear to hang while the icons load. Many of the
icons are grouped together by item type and these
have an 'it_*' prefix followed by a two- or three-letter
code:26

26 However, there are a number of exceptions: aid potion,
ale, ale empty, bowl command water, brazier command
fire, broken, brooch shielding, candle, cats grace
potion, censer control air, chalice lathander, chime
opening, cloak min displace, demon book, elf book,
elixir horus re, empty potion oval, generic scroll, gold,
healing moss, heal potion, hide leather, ioun stone,

 ac = clothing; ah = heavy armor; al = light
armor; am = medium armor; as = shield.

 be = belt; bo = boot; br = bracer; cft =
crafting item; ck = cloak; cp = ?; ds =
sample?; ess = essence.

 gem; gl = glove or gauntlet; he = headband or
helm; key; kit; m = mold.

 nk = necklace; pa = parchment; pot = potions;
ps = poison; qi = quest item; ring; s = spell; se
= special edition unique weapons; st = set; u =
musical instrument.

 wa = axe; wb = blade; wd = double weapon;
we = blade/other; wm = magic item; wo =
ordinance (ammunition); wp = pole weapon;
wr = ranged; wt = thrown; wu = blunt.

• Model Part 1, 2, 3 – These are menus that determine
how the item will be displayed in the game when it is
being worn or wielded. Not all item types will have
multiple parts, and the number of menu picks vary.
Some menu items will cause components of the
weapon not to be rendered.

• Tint – This expandable field is used to modify the tint
of the item parts when it is displayed in the game.
The actual effect depends on the base item type and
the model parts selected. Many items are not rendered
in the game, so they can be left unchanged.

Armor

This block will appear in the Properties panel when the
item is worn in a chest, helm, boots, gloves, belt or cloak
slot. It defines a set of clothing that will be displayed on the
creature when loaded into an equipment slot (as long as the
creature has its NeverDrawArmor [or NeverDrawHelmet
for a helm] property set to false).

• Belt – This is an expandable field that can be used to
set the belt's visual type, tints and variation.

lantern revealing, lens detection, locked book, malarite
totem, mortar pestle, orb elem[ental] summon, plain
book, pork jerky, quick silver, quiver, rags, recipe
book, scabbard bless[ing], scabbard keen, stone
control[ling] earth, torch, white parch[ment], wine,
wine empty and yellow parch[ment].

39

Items

• Boots – This is an expandable field that can be used
to set the boot's visual type, tints and variation.

• Chest – This is an expandable field that can be used
to set the main armor visual type, tints, variation, and
the various accessories. For belts, boots, cloaks,
gauntlets, or helms, this will select the main armor
type (cloth, leather, chain shirt, and so forth).

• Cloak – If true, render this cloak when equipped. This
should be set to true for items with a Base Type of
Cloak.

• Gloves – This is an expandable field that can be used
to set the gloves' visual type, tints and variation.

• HasBelt – If true, render the belt when equipped. This
should be set to true for items with a Base Type of
Belt.

• HasBoots – If true, render these boots when
equipped. This should be set to true for items with a
Base Type of Boots.

• HasCloak – If true, render this cloak when equipped.
This should be set to true for items with a Base Type
of Cloak.

• HasGloves – If true, render these gloves when
equipped. This should be set to true for items with a
Base Type of Gauntlet.

• HasHelm – If true, render this helmet when equipped.
This should be set to true for items with a Base Type
of Helmet.

• Helm – This is an expandable field that can be used to
set the helm's visual type, tints and variation.

Basics

These fields are mainly used for item identification and
description.

• Additional Cost – This is the additional cost of a
single item, above that of the base cost. It can be
useful for items that have unique properties or special
value. Negative values can be also used here to
reduce the base cost.

• Base Cost – This locked field shows the item cost as
determined by the item type and the selections in the
Item Properties field. To get the total cost of the

blueprint, add the Additional Cost times the Quantity.
• Base Item – Each item belongs to a base category that

determines some of the characteristics during play.
For example, an Amulet can be worn in the neck slot,
a Potion can be imbibed, and a Gem can not be
placed in an inventory slot or be given magical
properties. Containers are items that can contain other
items. The Base Item type determines the type of item
properties that can be applied, the equipment slot
where it will be placed, and the sound used when the
item is added to the inventory.

• Classification – This determines where the item will
appear in the blueprint tree. It is useful for
categorizing items that are unique to your module,
such as when you want a collection a set of unique
items for an area. The string you enter will serve as
the base name of the node. Use the pipe character '|' to
add sub-nodes. Removing the Classification string
will move it to the main items list.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing.

• Identified? – This is the default identified state of an
item. When an item has not been identified, it appears
blue in the PC's inventory window and the Item
properties will not be displayed. Items that have not
been identified can not be put in an equipment slot.

• Localized Description – When an item is examined
before being identified, this description is displayed
in the window.27

• Localized Description (when identified) – After an
item has been identified, the description in this field
takes precedence over the Localized Description
entered above.

• Localized Name – This is the name that is displayed

27 To view the default description for a Base Item type, see the
'Description' column of the 'baseitems.2da' file then retrieve
the number for the corresponding item type. Use a program
such as 'tlkedit' to view the 'dialog.TLK' file in the NWN2
install directory. Find the row entry matching the number.
Most of the descriptions are in the range 1667‒1736.

40

Items

when the item appears in the game. It is listed in
stores, during mouse-overs of the item, and in the
item examination.

• Resource Name – Is a unique, 32-character name that
serves as a blueprint identifier. It is used in the
CreateObject function call.

• Tag – This string is often used in script commands for
identification and look-up purposes. There can be
more than one instance of an object with the same
tag.

• Template ResRef – The resource name of the
blueprint template that this object inherits from.

Behavior
• Armor Type (for game rules) – For armor and shields,

this determines the game rules effects. The type
modifies the base armor class, maximum dexterity
bonus, armor check penalty and arcane spell penalty.

• ArmorRulesInfo – Depending on the armor type
selected, this locked field will show data from the
'armorrulesstats.2da' file.

• Charges – When an item has Item Properties that use
charges, this field specifies the total number of
charges that can be used before the charge-based
properties can no longer be used.

• Container Preference – For containers, this is
supposed to sets the Base Item types that can be
stored inside. The available types are: arrow quiver,
bolt quiver, gem bag, key ring, no preference (any),
scroll case, silver shard bag and sling stone bag.
Unfortunately, only the 'No Preference' setting works
for this field.28

• Cursed – this prevents an item in the inventory from
being dropped or transferred, but does not prevent it
from being sold. It does not force the item into an
appropriate slot.

• Damage Reductions – This is used to specify the

28 All others will produce an error message when an item is
added, saying, “You cannot place items of that type into this
container.” This occurs, for example, if you try to add gems
into a Gem Bag container (even if you set 'Force Into
Preferred Container').

Damage Reductions (DR) possessed by the item. The
values give an amount of DR, followed by a slash and
the weapon types that can ignore the DR.

• Droppable? – this determines whether the item can be
taken as loot when the owner is killed.

• Force Into Preferred Container – No effect.
• Item Properties – Selecting the ellipsis on this field

will display a dialog interface that can be used to set
various item properties. The available properties is
determined by the Base Item setting. See the Magic
items section below for more details.

• Item Property Activation Preference – This sets the
activation policy for item properties. The options are
to activate the item when equipped, when in the PC's
inventory repository, or either.

• Material – The Damage Reduction (DR) property
allows a creature to take less damage from an attack.
However, certain materials can penetrate the DR and
inflict the full damage. For a weapon, this field can be
set to one of these materials, or left as Non-Specific.

• MaximumStackSize – This locked field is the toolset
limit for the number of these items that can appear in
a single stack.

• Pickpocket – If true, a character can steal this item via
the pickpocket skill.

• Plot – If this is true, the item can not be sold at a
store. This is used for items that are essential for the
advancement of the plot, such as certain keys and
various quest items. It's also useful for preventing
players from getting rid of cursed items at a store.

• Quantity – This is the quantity of the item that will
appear when this blueprint is added to an inventory or
a Store.

• Stolen – If true, this is a black market item that
reputable shopkeepers will not purchase. Stores can
be configured to buy these items (at a markdown) by
setting the Store's Black Market property to true.

Misc
• UV Scroll – This field can be expanded to show U, V

and Scroll slots. If Scroll is true, then the item's
surface texture will scroll across the surface at a rate

41

Items

determined by the U and V settings.

Scripts

Items do not have event handler scripts. However, see the
'Item Scripts' section for details on tag-based scripting.

• Variables – This field can be used to define and
initialize variables that are used with scripts.
Selecting the ellipsis button will open up a dialog
window where the variables can be added or
modified.

Base Item

With the Items icon selected in the the Selection panel
under the Blueprints tab, you can create a new item by
right-clicking and choosing 'Create Blueprint' then 'Module'.
This will create a new blueprint with the prefix 'item'. Next,
select the item and choose the Base Item type from the
Basics section of the properties. This is a pull-down menu
of general item categories. The base type determines the
equipment slot where the item can be placed. It also
determines whether the item will be rendered in the game,
and the type of item properties that can be applied.

Certain slots only accept a specific Base Item type, such as
Armor or Cloaks. Others, such as the various weapons, may
accept more than one Base Item type. Finally, there are
Base Item types that can not be place in an inventory slot,
such as the various miscellaneous objects. If you are not
certain what Base Item type to choose, look at some of the
available blueprints.

Keys are special purpose items that are used to open
specific doors and containers. A key has a base item type of
'Key' and should be given a unique tag. The latter is used in
the 'Key Tag' field of a corresponding door or the
'KeyName' property of a container. Typically a door or
container that requires a key to open will have the Key
Required' property set to true. If opening a door is integral
to the story, the key item should have it's 'Plot' property set
to true. Various it_key_* icons are available for
conventional keys, although a key may take another form.

Appearance

Depending on the base item type chosen, you may be able
to modify the appearance of the item model as seen within
the game. Items that allow their appearance to be modified
are ammunition, armor, clothing, musical instruments,
shields, torch and weapons.

A convenient method to edit a weapon's appearance is to
bring up it's Properties in a new window (by right-clicking
the item) then selecting the window's Preview tab. The
Appearance section of the Properties (in the Properties
Panel) will then allow you to modify the weapon and view
the changes in the window. Some of the items, such as the
Long Sword, allow you to customize all three Model parts
and to change their tints. By contrast, other items have only
a limited selection, and not all of the Model parts menus
may produce a visible shape. Several items can be viewed
but not modified, such as the arrow.

Fine tuning the appearance of a magic sword by previewing
it in a separate window while adjusting the properties. The
Day/Night setting has been modified for better illumination.

Armor Set

For armor, first set the Base Item type to the appropriate
value for the armor category you want. The 'Armor type (for
game rules)' field also needs to be modified to match the
specific armor type, or to Cloth for boots, cloak, gauntlets

42

Items

or helm.

Items with the Base Item type of Armor, Boots, Cloak,
Gauntlet or Helm can now be viewed in the Properties panel
under the Armor Set tab. (You may need to scroll to the far
right of the tabs using the small triangular arrowhead in the
same bar.) To work with the Armor Set, it is easier to select
the blueprint, right-click, choose 'Properties (new window)'
and select the Armor Set tab.

Note that changing the Base Item type while you are
viewing the Armor Set in a separate window can produce
uneven results. If you do change the Base Item type, it is
recommended that you close and re-open the properties
window.

The figure in the window can be selected and moved about
as follows:

• Raise/lower – shift-mouse wheel.
• Zoom – control-mouse wheel.
• Rotate the view – shift-right click and drag.
• Drag the view – alt-right click.

If you want to view the figure under different lightning
conditions, you can vary the selection under the Day/Night
menu on the toolbar. Use the 'Run' and 'Fast' settings to run
through a full day's cycle in about 30 seconds.

Depending on the Base Item type, some of the Armor Set
fields can now be edited while others will be disabled. For
example, with a belt the Main type menu has the single
value: Leather, while the Main variation allows options 0-3.
You can also modify three tint settings for the belt. (Not all
tints will apply to particular item parts.)

Masterwork Items

The game rules define masterwork items as expertly
crafted weapons, armor and shields that provide additional
benefits but are not magic items. To create a masterwork
weapon blueprint of a long sword, first make a copy of the
existing mundane weapon. I change the Classification field
to “Masterwork|Weapons”, and modify the most of the
remaining fields in Basics to distinguish it from the regular
longsword. The Identified field should be set to True here,
as it is a non-magical item.

For the icon, I look for a matching type that is suitable for
a non-magical weapon. For example, if you copy a
longsword, the icon is already set appropriately for the item
type, so it is just a matter of scrolling down slightly to see if
there are any other non-magic icons that can give it a
distinctive appearance in the repository. A nice touch is to
modify the model parts and tints using the Preview display
in a separate window. I like to give the metal parts a slight
blueish tinge for a distinct appearance.

A masterwork weapon gains a +1 bonus to attacks, but no
damage bonus. Under the Behavior block, select the Item
Properties dialog and add a +1 Attack Bonus. This will
increase the weapon cost by 200. Masterwork shields and
armor gain a slightly different benefit. For an additional 300
gp cost, they reduce the Armor Check penalty by one. This
property can be set by selecting the appropriate Masterwork
item in the “Armor type (for game rules)” menu under the
Behavior section.

Note that under the v3.5 rules, magic armor and shields
are also masterwork items. Unfortunately, the stock magic
items provided in the toolset are not masterwork rated. If
this is an issue for you, then you'll need to copy the items
you want and set their armor types to the masterwork
equivalents.

Magic Items

Magical items provide special benefits (or penalties)
beyond the mundane properties of a normal item. There are
a variety of icons for use with magic items. These can be
selected using the pull-down menu in the Icon field. For
custom items, I usually avoid the icons used for items that
have only a simple enhancement bonus (such as +1
longsword), and I try to select an icon so it will match the
preview (where applicable).

Items with magic properties will typically have the
“Identified?” field set to True and an extended description
in the “Localized Description (when identified)” field.
Magic items that are in a PC's inventory when he first joins
the party will already be identified. Otherwise, it requires a
suitable Lore skill or an identify spell to reveal the
additional properties.

43

Items

The item properties are set using the “Item Properties”
interface. To modify the properties, click in the property
input box and then select the button with the ellipsis ('...').
The Item Properties dialog has three panels: Current
Properties, Available Properties and Selected Property. The
list of available properties may vary by the Base Item type,
with the Gem and Gold Piece having no properties. Some
items have only limited properties available, such as
Healer's Kit, Scroll or Trap Kit.29

First, scroll through the Available Properties list until you
find the property you want to add. In many cases you will
need to click on a '+' box to expand a node and view a sub-
list. Select a property and then left click the Add Property
button.

Configuring the properties of a magic item

Many of the properties allow a range of values. To select
the value, click on a property in the Current Properties list
and then view the data in the Selected Property panel.
Clicking on an input box can present a menu with the valid
values. Choose a menu item and the Current Properties
entry will be updated accordingly. When the properties are
set, click on the OK button. The Base Cost field for the item
will be updated to reflect the additional cost of the item
properties. More powerful benefits, or those that can be
used more frequently, will have a higher cost.

Under the Cast Spell property is a list of spells that can be

29 See the itemprops.2da file for the list of applicable property
flags by property category. Select an item column, then press
the small triangle for a sort. The cells with a '1' flag the valid
properties listed in the far right column.

cast using the item. Where a parenthetical value exists next
to the name, this indicates the caster level of the spell. Thus,
magic missile (9) is cast at 9th level and it provides the
maximum allowance of 5 magic missiles. There are also
several special purpose spell selections that do not function
like normal spells. See the 'Item Properties and Special
Abilities' section of the volume II for details.

You may want to control what types of characters can use
an item. To do so, modify the Item Properties and add one
or more of the Use Limitation properties. Multiple
limitations within the same set are generally logical OR'd.
Thus an item can have a class use limitation of Cleric and
Druid, allowing either class to use it. Note that these
limitations can be overcome by a character with a
sufficiently high Use Magic Device skill level. (See the
game manual for details.)

The following special effects can be useful for wielded
weapons, and may be set using the pull-down menu in the
'Appearance (special effect)' field:

Effect Possible Use
fx_animus On hit: confusion or deafness
fx_aurora_chain_glow On hit: sleep
fx_balor_sword Damage bonus: fire (string)
fx_d_ghost_weapon On hit: hold or fear
fx_defaultitem_acid Damage bonus: acid
fx_defaultitem_elect Damage bonus: electricity
fx_defaultitem_fire Damage bonus: fire
fx_defaultitem_frost Damage bonus: cold
fx_defaultitem_holy Damage bonus: divine
fx_defaultitem_neg Damage bonus: neg. energy
fx_defaultitem_poison On hit: poison
fx_e_soul_glow On hit: daze
fx_familiar_breakup Damage bonus: pos. energy
fx_githsword Blue-white streamers
fx_ice_mephit_frost Damage bonus: cold (minor)
fx_nolaloth On hit: blindness
fx_pois_dot_linger On hit: poison or disease
fx_silversword01 Small blue-white tendrils

44

Items

Intelligent Weapon

The toolset can allow you to create a unique weapon that
can speak and hold a conversation with the PC. To
transform a magic weapon into an intelligent weapon, you
will need to do the following:

1. Create a magic weapon with a unique tag and
suitable item properties.

2. Add an Item Property "On Hit Cast Spell" with the
spell name set to "Intelligent Weapon".30

3. Add an Item Property "Cast Spell" with the spell
set to "Talk to" and the CostValue set as
"Unlimited Uses".

4. Create a non-static Ipoint blueprint with the
Template Resref of "x2_plc_intwp" and a 'Last
Name' matching the intelligent weapon name.31

5. Build a suitable Conversation tree with a name that
matches the tag of the weapon.

The default module event scripts, 'x2_mod_def_equ' and
'x2_mod_def_unequ' contain code to check for the Item
Property "On Hit Cast Spell: Intelligent Weapon". On
success, they call routines from the 'x2_inc_intweapon' file
that cause the weapon to sometimes speak one-liner strings
from its Conversation.

The 'On-Hit Cast Spell' item property can cause random,
one-liner strings to be spoken on a successful hit using the
weapon. This property is defined by row 135 of the
'irp_onhitspell.2da' file, which lists a 'SpellIndex' of 768.
The 'Intelligent_Weapon_OnHit' spell on row 768 of
'spells.2da' has the 'ImpactScript' named 'x2_s3_intitemijk'.
This runs a command from the 'x2_inc_intweapon' include
file to sometimes generate a one-liner message.

Adding the item property 'Cast Spell' of type 'Talk to' will
allow the PC to hold interactive conversations with the
weapon. This spell corresponds to row 536 of the

30 Steps 2 and 3 can instead be applied from a script with the
'IWCreateIntelligentWeapon' call in 'x2_inc_intweapon'.

31 Note that the fixed ResRef of this placeable means that their
can only be one such intelligent weapon per module. To allow
more than one such weapon, you will need to build a modified
version of the 'x2_inc_intweapon' script, then add duplicates
of all the scripts that include this file.

'iprp_spells.2da' file, which has a SpellIndex of 767. The
spell at row 767 of 'spells.2da' will call the script named
'x2_s3_intitemtlk'. This calls an 'x2_inc_intweapon' routine
to start the conversation. The item property will appear as a
"Talk to" menu selection once the weapon is equipped.

When the 'Talk to' menu item is selected, a start
conversation routine in 'x2_inc_intweapon' will attempt to
create a placeable with a resource name of "x2_plc_intwp".
This placeable blueprint may not exist in your toolset
release. But you can construct a suitable item by making a
copy of the 'Ipoint' placeable in the MISC PROPS section of
the Placeables blueprints. This blueprint should have a
Template Resref of "x2_plc_intwp", a 'Last Name' matching
the name of the weapon, and have a Static property of
FALSE.

For the weapon to speak the one-liner messages and hold
discussions with the PC, you will need to construct a
Conversation for the weapon that has the same name as the
item tag. See the Intelligent Weapon Conversation section
for details on how to construct this conversation.

Cursed Items

To create a cursed item, set the Cursed boolean field to
true. This will prevent the item from being dropped or
transferred to another character's inventory until a remove
curse spell is used. Being cursed does not, however, lock
the item in an equipment slot or prevent it from being sold.
(Note that cursed ammunition or thrown items will also be
removed by using them up in combat.) If you want a cursed
item to remain in an equipment slot once it is placed there,
you can implement a tag-based script.

If you want a cursed item to take effect right away, the
simplest approach is to set the Base Item to a type that can
not be equipped (such as one of the Miscellaneous_*
options), then set Item Property Activation Preference to
ITEMPROP_ACTIVE_REPOSITORY_ONLY. Next, one
or more Item Properties are usually selected that have a
negative impact on the owner. Examples include Decreased
Ability Score, Decreased Skill Modifier or Weight Increase.
(Some cursed items may also have beneficial properties.)
To prevent the player from getting rid of the item by selling
it at a store, either set the Additional Cost equal to the

45

Items

negative of the Base Cost (so that the Additional Cost
would be equal to -9 if the Base Cost were 9), or set the
item's Plot flag to true.

Example

Staff of Light

I want to create a staff that has powers of light. To do this,
I create a new item and make the following property
changes in the order listed:

Property Value
Base Item Quarterstaff
Icon it_wd_qstaff04

Model Part 1 6
Appearance (special effect) fx_silversword01
Color3 Pure Yellow (#FFF200)
Template ResRef staff_light
Resource Name staff_light
Localized Name Staff of Light
Tag staff_light
Identified? False
Charges 99

For the Localized Description ('When Identified') property
I enter:

• This staff will bring a cleansing light to the deepest
shadows. A magically enchanted length of hickory is
topped with a single, clear crystal of quartz that
continually glows with a brilliant golden light.

Leaving the 'Localized Description' field entry will cause it
to use the default description referenced by {1673} from the
'baseitems.2da' file.

Next I modify the Item Properties as follows:

• Enhancement Bonus [+1]
• Attack Bonus vs. Racial Group: Incorporeal [+2]
• On Hit Cast Spell: Flare [Level 2]
• Cast Spell: Searing Light (5) [2 Charges/Use]
• Cast Spell: Sunbeam (13) [4 Charges/Use]
• Light [Bright (20m)][Color: Yellow]

• Use Limitation: Class: Bard
• Use Limitation: Class: Sorcerer
• Use Limitation: Class: Wizard

Note that I chose to give the item an odd number of charges
(99) and each of the charge/use properties an even number
of charges (2 or 4). This will prevent the item from being
lost due to expending charges. The base cost for this item is
58,852 gp.

46

Creatures

Creatures
The toolset includes a set of pre-built creature blueprints,

organized by their racial type and general traits. A creature
is a type of object that can have a scripted behavior and
move about within an area. The PCs can interact with
creatures in the game, whether to hold conversations, pick
their pockets, or engage in combat. Each creature has a set
of unique statistics determining its capabilities, and these
can be modified over the course of a campaign. Creatures
can possess an inventory of equipment, such as weapons,
armor, gems, potions, and scrolls. Many of the available
creatures can be used as is within a module, but you will
typically want to customize unique creatures such as NPCs
and leader creatures. Player races in particular can require
extensive customizing in order to make their appearance
less repetitive.

To display the list of available creatures, left-click the
Creatures tab at the top of the Blueprints panel. You can
either create a creature from scratch or copy an existing
creature. To build a new creature blueprint, right-click on
the list, select 'Create Blueprint', then 'Module' in the sub-
menu. A new, uncategorized entry will be added in bold
face text at the bottom of the creature sub-list. To modify an
existing creature, select a creature in the list with a left-
click, then right-click with the cursor over the creature and
choose an option from the Copy Creature menu.

After a new creature blueprint is created, you can select
the creature with a left-click then right-click to view the
available options for customization. For player races, I
typically begin by opening the Appearance Wizard to build
a basic look for the creature. When this step is complete, the
Properties panel can be opened to modify the creature
statistics, feats, skills and special abilities, then add an
inventory of equipment.

What isn't immediately apparent is the type of challenge a
creature will pose for a PC. For the built-in creatures, you
can determine this by looking at the Challenge Rating
property. For example, the Mind Flayer creature lists a
Challenge Rating of 7, indicating it would be an opponent
of moderate difficulty for a party of four fourth-level PCs.

Appearance Wizard

The Appearance Wizard dialog interface can be used to
edit the visual look of your creature within the game. To
configure your creature's appearance, select the created
blueprint with a left-click then right-click to choose
'Appearance Wizard'.

Warning: the use of the rendering pane in the Appearance
Wizard can result in unexpected crashes. When creating
multiple creatures, is is important to save your module in
between each use of the Appearance Wizard. This doesn't
prevent the crashes, but at least there was less work lost.

The first panel of the Appearance Wizard

First Panel

Along the left side of this dialog is a rendering panel that
shows the current appearance of your creature. Underneath
the appearance are controls for moving and rotating the
creature image. The '+' and '‒' buttons enlarge or shrink the
image; the left and right arrows turn it, and the up and down
arrows move the image in the corresponding vertical
direction.

First, select the Body type from the pull-down menu. You
may need to search the list for what you want. Keep in mind
that only certain creature types provide the full gamut of
appearance options. Thus, you can change virtually every

47

Creatures

feature on a player race, but a wolf is very restricted. For
maximum variety in appearance, choose a dwarf, elf,
gnome, half-elf, halfling, half-orc or human.

For most creatures, setting the Effect to none is
appropriate; you can always change it later after the
appearance has been set. Next, select the gender. For certain
creatures, choosing male or female presents different
appearances throughout the editing.

If the Body is set to one of the player races, the head and
hair variations provide a mixture of appearances. At this
point it is helpful to manipulate the appearance pane to
enlarge and center the head and upper body in the view.
Rotating the body slightly is useful for viewing the selection
at different angles. Try different head and hair combinations
until you get what you want, or else just use the 'Random
Head/Hair' button. Toggling the 'Has Facial Hair' option
may add or remove a beard and/or mustache, depending on
the Body type, Gender and Head Variation.

The tint section can be used to provide unique coloration
for the creature's head. You can choose colors from the
standard palette at the lower right and then fine-tune them
by clicking on the saturation/brightness pane at lower
center. I find that a pastel red orange or a yellow-orange
gives a good starting point for human flesh tones, then fine
the value in the palette. Selecting a hair base that is darker
than the highlight tone results in a natural depth to the hair.
For human facial hair, I usually use a tone similar to the hair
base, then vary the saturation and brightness slightly. Eye
colors are brown, blue or green for humans.

Clicking Next will take you to the second panel.

Second Panel

The second panel is used to set the creature's default garb.
This interface works well for player character races, but has
little or no effect for other creatures. I prefer to fine tune the
appearance by selecting each of the “Apply To” buttons in
turn, then setting the respective appearance. You may want
to edit multiple settings at once or do them all together.

To begin fine tuning the garb, I click “Uncheck All” and
then select the “Armor” check box. (In the patched version
this step is unnecessary.) Next, choose an armor type. What

you do here depends on whether you want the creature to
always have a certain appearance, or to show the armor
currently being worn in the inventory. If the latter, then you
will probably choose “Default (cloth)” for the unarmored
look. Some armor types have more options than others, so
you will need to experiment to find out what you like.

Next, you can apply tints to the garb. The three tints will
apply the selected color to different areas of the armor,
although for selected clothing types only some of the tints
may function. (The 'Cloth 29' armor, for example, doesn't
accept tints.) For the purposes of editing, at times I find I
need to select and/or toggle the 'Visible' check box in order
to view the selections and tint changes.

There are few options available for showing scantily clad
humanoids. The Gloves have a bare flesh option, but the
flesh tone here does not always match the tone chosen for
the head, so this option is limited. There is no method to
display bare feet. One of the cloth armor settings allows for
granny's or grandpa's underwear, which looks a little odd
for a medieval fantasy setting. The NWN2 Vault has a large
number of additional clothing variants, so you may want to
explore that web site.

When the armor has been selected and tinted, uncheck the
Armor box and choose one of the other “Apply To” check
boxes. Rinse and repeat, using the Visible button to toggle
the look and untoggling the current selection when applying
a new one. Click Next to move to the third panel.

Third Panel

This panel can be used to fine tune the look of armor by
adding various components. If the garb from the second
panel will not appear when a character is wearing armor,
this panel is not as useful and I usually skip it. For a unique
character look, however, this panel is very helpful in fine-
tuning the appearance of a humanoid creature.

To begin, you will need to select one of the “Apply To”
radio buttons. If your creature will have a symmetrical
appearance, “Both” works best. Otherwise you can select
different armor for a more unique look. (Note that many of
the stock creatures and armor blueprints use asymmetrical
armor.)

48

Creatures

Armor piece selection begins by choosing one or more of
the Affected Attachments(s) check boxes. Some of the
boxes may not have variations available, such as the ankle,
foot and hip. The shin options will only be available if you
did not apply boots on the second panel. Others have only a
limited array of options. By contrast, the attachments for
parts of the arms, legs and shoulders have a wide variety
and you will need to experiment with the variation to find
the look you like. You can also tint the armor pieces, much
as you did with the basic garb.

When you are done, select Finish. I prefer to do a save
immediately afterward in case of a crash. Note that if you
go back into the Appearance Wizard after you've exited,
you might not be able to modify some of the tints. The
work-around is to use the tints menus in the Properties
window.

Properties

With your creature appearance completed, the blueprint
can be configured using the Properties Window. After
selecting the blueprint entry, right click and select
“Properties (new window)”. This will open up a separate
window with multiple tabs along the top.

Properties

Selecting the Properties tab will display a list of parameter
names and values. These are subdivided into Appearance,
Basics, Behavior, Character Sheet and Scripts blocks. When
a creature is selected in an area, a Misc block will also
appear showing the location information. Each can be
contracted or expanded using the small plus/minus box at
the left of the header.

Appearance

This block governs how the character will appear in the
game. Many of these are set using the Appearance Wizard:
Appearance, Tint and Never Show Armor.

A creature property that I've come to treat with particular
caution is 'Appearance'. For example, setting it to 'Half
Drow' did not produce a properly rendered character, and
even it caused a modification to the appearance of another
creature in the scene; whereas 'half-elf' worked fine. In

another instance, I experimented with setting this to an
inappropriate value for a human, the 'Dwarf', and thereafter
all of the characters were rendered incorrectly in that area:
with each showing blond dwarven hair!

Here is a description of the other Appearance fields:

• Body Bag – This is a selectable menu of body bag
types. This setting appears to be ignored.

• Cast Shadows? – Choose the sources from which the
creature should cast shadows.

• Custom Portrait – This menu allows you to select a
128 × 128 pixel Truevision Targa (.tga) file for the
creature's in-game portrait. Other image sizes will be
scaled to fit.

• NeverDrawArmor – If True, the creature will always
show the armor selected using the Appearance Wizard
instead of the armor currently being worn. This gets
set if you apply the 'Visible' flag in the second panel of
the Appearance wizard.

• NeverDrawHelmet – If True, always show the helmet
selected with the Appearance Wizard.

• Receive Shadows? – Choose the sources from which
the creature should receive shadows.

• Scale – The scale multiplier to apply the the three
coordinate dimensions: width, depth and height. This
field is useful for creating a set of creatures with a
unique appearance, such as people inhabiting a village.
Small changes in the range 1‒5% usually work best.
To make the character tall and lanky, increase the
height. For a heavyset character, increase the width
and depth. A very portly character may have a width
of 1.15 and a depth of 1.35.

• Tail – Apply a tail to the character image. This will
only work with certain creature types, especially for
those that do not already have a tail.

• UV Scroll – When the Scroll field of this expandable
box is set to true, it causes the surface texture to scroll
across the creature at the rate determined by the U and
V fields. This is used for some of the amorphous
creature types such as fire and water elementals.

• Wings – Apply wings to the creature image. The wing
selections are intended for specific appearance types,

49

Creatures

so they will typically not fit other creatures.

Basics

This block is mainly used for identification. After a
creature is placed in an area, several of these fields are
moved to the Misc block.

• Classification – This determines where the creature
will appear in the blueprint tree. It is useful for
categorizing creatures that are unique to your module,
such as when you want a collection a set of unique
creatures for an area. Use the pipe character '|' to add
sub-nodes.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing.

• Conjure Sound Tag – A tag for a sound blueprint that
is intended to be played when the creature is magically
conjured as a familiar, companion or summoned
monster. It may be unused.

• Conversation – This string field can contain the name
of a conversation generated with the Conversation
editor. For a non-hostile character, this dialogue is
activated by clicking on the creature when the talk
cursor is being displayed.

• Faction ID – A creature's faction determines it's
attitude and behavior toward the player. The standard
factions are: Hostile, Commoner, Defender and
Merchant. Characters with the Commoner faction tend
to act cowardly in combat, whereas Hostile creatures
readily attack the party. See the Factions menu item
under the View menu for a table of inter-factional
relations (from 0=hostile to 100=friendly).

• First Name – The first name that will appear when the
creature is selected in the game. For a PC, this name
can be included into a conversation as a label. With
generic, non-interactive NPCs, it could instead be used
to hold the profession. Thus it could say “Commoner”
or “Pirate”, for example. Note that the name can be
changed via a script, allowing this field to be updated
as the result of a conversation, for example.

• Last Name – The last name that will appear when the
creature is selected in the game. For a PC, this name

can be included into a conversation as a label. It can be
left empty for generic creatures.

• Localized Description – This is the text that will be
displayed in a panel when the character performs an
Examine. It can be used to give significant characters
more color.

• Resource Name – Is a unique, 32-character name that
serves as a blueprint identifier. It is used in the
CreateObject function call.

• Tag – This string is often used in script commands for
identification and look-up purposes. There can be
more than one instance of an object with the same tag.

• Template ResRef – The resource name of the blueprint
template that this object inherits from.

Behavior

This block determines how the creature object generally
functions within the game engine. It does not cover specific
creature abilities or event handling.

• Always Perceivable – If this is true, then the creature
will always be perceivable, regardless of intervening
obstacles such as walls or doors.

• Bump State – If a creature is bumpable, then it will
move aside to allow another creature to pass. An
unbumpable creature will hold it's position and the
game will treat it as an obstruction. The default setting
makes non-hostile creatures bumpable.

• Can Talk to Non-Player Owned Creatures? – If this is
false, then, when an NPC party member initiates a
conversation, this creature automatically switches to
speak with the party PC. Setting this to true allows the
creature to continue speaking with the NPC.32

• Conversation Interruptible – Unknown.
• Decay Time – If 'Decays' is set to true, then this is the

number of milliseconds until the corpse fades from
sight.

• Decays – Whether or not the corpse fades away after
the decay time.

32 Unfortunately, the 'ga_open_store' script in the conversation's
action section will still use the Appraise skill of the PC for
determining costs.

50

Creatures

• Disable AI While Hidden – Turn off the AI while a
creature has the Script Hidden flag set to false.

• Disarmable – If true, a creature can be disarmed as a
combat maneuver. This defaults to false, but should
set be true for humanoid and other weapon-wielding
creatures (otherwise, why take the Disarm feat?)
Unfortunately there is no function call that will allow
this setting to be modified in a script.

• Immortal – This creature can be damaged, but it can
not be reduced below 1 hit points. This could be used
for creatures where you want to initiate a conversation
prior to their death (followed, say, by a magical
teleport or a script that turns the immortal flag to
false). You can toggle this value with the SetImmortal
call.

• Lootable Corpse – If this is true, any inventory flagged
as droppable can be looted after the creature is dead.
No other items can be looted. Setting the variable
X2_L_NOTREASURE to 1 on the module will
disable the automatic treasure generation system for
most creatures.

• No Permanent Death? – If true, a dead creature can be
brought back to life via a cleric resurrection spell.
This is useful for potential party members.

• Perception Range – This sets the limiting range for
this creature to perceive opponents. See the
'ranges.2da' file for more data.

• Plot – This makes the creature immune to combat
damage or status effects. It generally shouldn't be used
for mortal NPCs who could engage in combat, as it
makes them invulnerable.

• Resurrectable – Not sure how this differs from 'No
Permanent Death?'.

• Script Hidden – If this is true, during game play the
creature is treated as though it were not in the game.
That is, it can not be viewed or selected, and it is not
tracked for collisions. This mode is useful for
ambushes or cutscenes. Use the SetScriptHidden call
to toggle this state.

• SelectableWhenDead? – This causes the creature to be
selectable after it is dead, even if it has no loot. This

allows the player to perform an Examine of the body.
• Sound Set – A long list of sound sets. For NPCs, look

in particular at the Female, Human and Male groups.
Not every selection gives good results for conversation
greetings. You may need to experiment.

• Spirit Override – If set, then the creature returns true
to the GetIsSpirit call. Elementals and Fey are always
considered spirits, regardless of the flag setting.

• Templates – These are some of the creature templates
found in the D&D monster manual, and they provide
modifications to the basic character characters. They
are useful for special creature backgrounds, for
example, or an outsider version of an animal.

• Walk Rate – This is a menu of various walking rates.
It defaults to PC_Movement. The movement rates are
listed in the 'creaturespeed.2da' file. The value can be
retrieved using the GetMovementRate call.

Character Sheet

This block includes statistics that would be used if the
creature were being used in the tabletop version of D&D.
Thus it includes the hit points, armor class, class levels,
feats, characteristics and saves. These are more readily
configured via the Basics, Statistics and Feats tabs, rather
than setting them here.

• Deity – This is the name of the deity that appears in
the character game panel. It can be retrieved via the
GetDeity call. This value can be inserted as a tagged
field in conversation strings, and can be checked via
the gc_deity script. The campaign deities are listed in
the 'nwn2_deities.2da' file.33

• Fortitude Save Bonus – This is the User Modifier
bonus to the Fortitude Saving Throw, as set in the
Statistics tab.

• Reflex Save Bonus – This is the User Modifier bonus
to the Reflex Saving Throw, as set in the Statistics tab.

• Starting Package – For a party member, this field
restricts the Player's choice of class for level up. The
SetLevelUpPackage routine can be used to change the

33 Deity selection matters, for example, when using the
recitation spell.

51

Creatures

package, which may be useful for activating a Prestige
Class at an appropriate point. A call to the
SetUnrestrictedLevelUp routine will eliminate the
class restriction for the character.

• Will Save Bonus – This is the User Modifier bonus to
the Willpower Saving Throw, as set in the Statistics
tab.

Scripts

The Scripts section is used to set event handling scripts
and local variables. If you want the creature to behave as
they do in the official campaign games, the script fields
should be filled in with the appropriate script set. See the
NPC Default Scripts section for details.

• On Blocked Script – this is executed when the
movement path of the creature is blocked by a
creature, door or object. This script could be used to
open or bash a door. The blocking object is returned
by GetBlockingDoor().

• On Conversation Script – this is run when the
creature is selected for a conversation, or when it
hears a shout. The GetLastSpeaker() call will return
the object that triggered this script.

• On Damaged Script – this script is run each time the
creature takes damage. The object causing the
damage is returned by GetLastDamager(), while the
GetTotalDamageDealt() call returns the amount of
damage.

• On Death Script – when the creature drops below one
hit point, this script is run. The GetLastKiller() call
returns the object that triggered this script. Once a
creature is dead, it can not run delayed commands.

• On End Combat Round Script – at the end of this
creature's combat round, this script is run.

• On Heartbeat Script – this is always run every six
seconds. Custom, time-consuming heartbeat scripts
should be used sparingly as repeatedly running them
can slow down the game.

• On Inventory Disturbed Script – run this script when
the inventory of the creature is changed, such as by a
pickpocket attempt or by an item added during a
conversation. The GetLastDisturbed() call will return

the object that triggered this script to run. The
GetInventoryDisturb...() calls can be used to find
what item was disturbed.

• On Perception Script – each time an object enters the
perception range of this creature, this script is run.
The object is obtained by a GetLastPerceived() call.
The GetLastPerception...() calls can be used to
determine whether the creature will notice the object.

• On Physically Attacked Script – this is run whenever
the creature is attacked, whether by melee or a ranged
weapon. The GetLastAttacker() call returns the
attacking object.

• On Rested Script – this script is executed when the
creature ends a rest interval.

• On Spawn In Script – run this script when the
creature is spawned into an area.

• On Spell Cast At Script – when the creature is the
target of a spell, this script is run. The
GetLastSpell...() calls will return information about
the spell.

• On User Defined Event Script – user-defined events
will cause this script to run. These are triggered from
other scripts by SignalEvent calls that are passed an
event generated by an EventUserDefined function.

• Variables – This field is convenient for setting local
variables that are used during conversations with an
NPC. Selected variables are used by the standard
creature scripts to determine their behavior. See, for
example, the various creature variables checked in the
default on-spawn handler script, 'nw_c2_default9'.

Inventory

The Inventory tab is used to configure the starting
equipment owned by the creature. The upper panel is for
items being carried in the non-equipped inventory, while the
lower panel summarizes the items in the equipment slots.

Selecting 'Edit...' will open an editor dialog that will allow
you add or remove inventory. The panel in the lower left of
the editor dialog contains the same list of items that appears
in the Item blueprints. You can select these items and add
them to the inventory with the 'Add Item' button. To remove

52

Creatures

an item from the inventory, select it and use the 'Remove
Item' button.

In the right panel of the dialog is a table of the items that
will be placed in creature's equipped items slots. However,
in order to use these items, the creature must have the
required feats; otherwise the game engine will unequip the
unusable items during play. Items can be dragged from the
inventory panel in the upper left and dropped in the
appropriate slot on the equipped items list. Thus a ring can
be placed in the 'Left Ring' or 'Right Ring' fields. To delete
an item from a slot, either select it and press the 'Delete' key
or else drag it to the Inventory panel and use the Remove
Item button.

At the bottom of the right panel is a set of four slots that
are used for creature weapons and hide. There are no
corresponding slots in the Inventory panel. If a creature
with items in these slots is added to a party as an NPC, the
natural weapons appear as items in the backpack (and may
not even have a valid icon). This can be avoided by only
allowing the creature to join a party as a henchman or
associate, thereby making the Inventory panel unavailable.

A sample inventory panel. This creature has five
items set as Droppable and two as Pickpocketable.

When an item is flagged as Droppable in this dialog, it can
be looted from the corpse of the creature (assuming you
have 'Lootable Corpse' set to true in the creature Properties).
Items with the 'Pickpocketable' flag set can be stolen by a
successful use of the 'Sleight of Hand' skill. All other items
are available to the creature but can not be removed unless
the creature joins the player's party as a PC.

Basics

To the right of the Inventory tab (and the unused Store tab)
is a set of tabs for defining the creature character sheet
settings. For best results, the Basics, Statistics, Feats and
Skills properties tabs should be modified in order from left
to right. Thus, Basics should be edited before Feats. If the
tabs are used out of order, you may end up with incorrect
settings.

First, make certain that the creature has the correct Sub
Race, Appearance and Gender. Next, use the Classes
section under the Basics tab to define class levels that have
been gained by the creature. Each creature race has a
favored class, and clicking on the 'Reset From Race
Favored' button will set the creature to level 1 in that race's
favored class. The favored classes for the PC races are listed
in the game manual. A favored class only comes into play
when a PC has levels in multiple classes that are not favored
classes, in which case the game rules can impose a hefty
experience penalty.

To set the initial class, click on the arrow button located
on the class name field and choose the appropriate type.34 If
the creature has more than one level in the selected class,
increase the value in the field to the right of the class name.
The up and down arrows can be used to increment the level.
Some classes have a list of default packages, and selecting
'Reset from Package' will set up various feats and skills
appropriate for that package and level.35

If you want to add an additional class to a creature, click
on the Add button then set the class and level for the new
addition. The toolset can have as many as four classes,
including Prestige Classes. However, script commands such
as GetClassByPosition only recognize three classes. You
should make certain that the requirements for a prestige
class are established.36

The following table gives a summary of the non-PC racial

34 The available classes are listed in the 'classes.2da' file, which
also lists the hit dice, skill points base, whether it is a player
class, and so forth. See the game manual for information on
the player classes.

35 See the 'packages.2da' file.

36 These can be found in the cls_pres_*.2da files.

53

Creatures

classes. The base attack bonus increases by +1 per level if
the Attack rating is High, by +3 per 4 levels for a Medium
Attack rating, and by +1 per 2 levels for a Low attack value.
The High saves list the saving throws that are set to +2 at
level 1 and increases by +1 at levels that are evenly
divisible by 2. All other saving throws are set to the number
of class levels divided by 3.

Class
Hit
Dice Attack

High
Saves

Skills
List

Skill
Points

Monster Classes
Aberration d8 Medium Will Fighter 2
Animal d8 Medium Fo/Rf Cleric 1
Beast d10 Medium Fo/Rf Fighter 1
Construct d10 Medium None Cleric 0
Dragon d12 High All Cleric 6
Elemental d8 Medium Fort Fighter 2
Fey d6 Low Rf/Wi Fighter 2
Giant d8 Medium Fort Fighter 1
Humanoid d8 Medium Fort Cleric 1
Magic Beast d10 High Fo/Rf Fighter 1
Monstrous d8 High Rf/Wi Fighter 2
Ooze d10 Medium None Wizard 2
Outsider d8 High All Rogue 8
Plant d8 Medium Fort Fighter 2
Shapechanger d8 Medium All Fighter 1
Undead d12 Low Will Fighter 2
Vermin d8 Medium Fort Fighter 1

NPC Classes
Commoner d4 Low None Cleric 1

where Fo=Fortitude, Rf=Reflex and Wi=Willpower.

Commoners

The Commoner class is an NPC class with significant
limitations to skills and feats. In addition, the game AI
makes commoners behave in a cowardly manner during
combat. They will automatically flee from an attacker for 4
seconds. However, if there is a 10th level commoner in the
vicinity and he is attacked or killed, then the commoners
will form a mob and attack. After taking some losses
though, they will disperse. The script notes advise against

making multi-class commoners.

Unfortunately there is no equivalent to the Adept,
Aristocrat or Expert classes from the core rulesbooks.
Adding these might be possible through modifications to
the 2DA files. The Warrior class can be simulated with the
Monstrous class.

Statistics

This tab section configures many of the parameters found
in the Character Sheet section of the properties tab. It is
divided into sections for Ability Scores, Saving Throws, Hit
Points, Armor Class and Attacks. Most of the fields can not
be edited, as they are derived from selections on the Basics
tab.

The Ability Scores section lists the standard scores used as
in the role-playing game. There is no random function or
point system for assigning these scores, although the toolset
creatures come already configured per the statistics in the
game rulesbooks. For humanoid commoners and peasants I
like to use a method suggested in the game rulesbooks,
which is to assign the sequence 8, 9, 10, 11, 12 and 13 to
the various ability scores, based on the profession and
background of the creature. Thus a skilled laborer might
have Str 13, Dex 10, Con 11, Int 8, Wis 12, Cha 9. For
prominent NPCs, I use the sequence 15, 14, 13, 12, 11, and
10 instead. Obviously this is not cut and dried; it is better to
use whatever Ability Scores make sense for the creature.

The Saving Throws are computed based on the class,
level, ability scores and racial modifiers. However, the 'Use
Modified' field can be used to introduce arbitrary modifiers.

By default the total hit points are set to half the maximum
per class level, then modified based on the Constitution
score. Clicking the 'Reset for MAX' button will recompute
the hit points based on the maximum possible value. You
can also set the current hit points lower than the maximum,
which will cause the creature to appear injured when
examined by a mouse-over in the game. If you change the
class levels on the Basics tab, the total hit points might not
be recomputed. You fix this, will need to select the
appropriate Reset button in the Hit Points section on the
Statistics tab.

54

Creatures

Feats Tab

This tab section is used to assign various feats to the
creature. The top part of the panel has a section for filtering
the list of feats. If you change 'Filter By Assignment' to
Assigned, then only selected feats will be shown. Any text
entered into the 'Filter By Name' field will limit the
displayed feats to those that include the text pattern in their
names.

Many of the feats are organized into categories as shown
in the game manual. The history category lists feats that are
used in the core campaign, or during character creation.
Racial abilities are the quasi-feats used to represent race-
specific abilities, such as Quick to Master for humans. Class
abilities are used for the class level special abilities, such as
favored enemy for a ranger and the various domains and
domain powers for clerics. (Type 'domain' in the Filter By
Name to view all the domains.) To display all of the feats,
select the 'INVALID_FEAT_CATEGORY' setting.

If you clicked “Reset from Race” or “Reset from Package”
buttons on the Basics tab, the toolset will select various
feats from this list as appropriate for the race or class
package. However, if you had previously selected feats
from this tab, those may remain selected; resulting in
superfluous feats. To fix this you can select 'Remove All',
then click 'Reset from Package' on the Basics tab.
Alternatively, click the Remove All followed by the 'Add
Class Granted Feats', 'Add Race Granted Feats', then select
additional feats for the class levels.

Skills

This table is used for setting the skill ranks in the standard
skills used by the NWN2 game engine. Normally the skill
points will be assigned for you when you first select 'Reset
from Package' on the Basics tab. When I edit this section I
like to start by clicking on the Name field. This will place
the skills into sort order.

The unfortunate aspect of this tab is that it does not keep
tabs of the skill points for you. Instead you will need to
work them out manually using the standard game rules
manuals. It also does not identify the skills that are class
skills or cross-class skills for the character's various class

levels.

You will want to take more care with the starting skills of
potential party members, and less so with throw-away
characters. If you don't want to work out the skill point
details, here are some simple heuristics for quick skill
assignment:

• None of the class skills will exceed the total character
class levels plus 3.

• Good skills should be based on the character's highest
ability scores. A good Charisma score should be
matched with a high Cha-based skill, and so forth.

• Bards, outsiders, rangers and rogues will have 6-8
good skills.

• Barbarians, druids, monks, spirit shamans and
wizards will have 4-5 good skills.

• All others will have only 2-3 good skills.
• Commoners will have 1 good skill.
• Humans get a bonus high skill.

However, your mileage will vary (considerably). See the
game manual appendix for more details.

Special Abilities

Further to the right on the Properties panel is a tab for
special abilities. These are used for various racial specific
abilities as identified in the monster descriptions found in
the games rules. Many of the picks correspond to spells
listed in the game manual. However, there are some picks
that have a specific purpose or are associated with an item
rather than a creature. For more information on these unique
powers, see the 'Item Properties and Special Abilities'
section in volume II.

Note that if you add a creature with special abilities to the
party as an NPC, those abilities will not appear in the
creature's Character Panel. It is only possible to access them
by a script that allows the creature to use the ability as a
talent. Thus, for example, the Dryad's 'Barkskin' special
ability is a talent of type TALENT_TYPE_SPELL with an
identifier of SPELL_BARKSKIN.

55

Creatures

Options

Custom Behavior

The behavior of creatures is determined by a set of scripts
in the Scripts property fields. In order to customize these
scripts, you should first become familiar with writing
scripts.

You can select a standard script set via the 'Script Set...'
menu item under the 'Import Properties' button on the
toolbar creature's Properties pane. For example, selecting
the c_StandardScripts file will install the default scripts
used by many of the NPCs and creatures. These scripts are
named nw_c2_default, followed by a hexadecimal
character.37

Standard 'On Spawn In Script'

The default NPC 'On Spawn In' script is nw_c2_default9.
This script will check a number of local integer variables to
determine the creature's behavior.38 These variables should
be set in the Variables property field for the creature.

The 'x2_inc_switches' include file defines specific local
variables that, when set to 1 on the creature, will trigger
certain behaviors and properties when the standard scripts
are being used:
• "X2_L_SPAWN_USE_AMBIENT" – creature will move

about randomly and play animations.39

• "X2_L_SPAWN_USE_AMBIENT_IMMOBILE" – creature
will stay stationary but will perform some animations.

• "X2_L_SPAWN_USE_SEARCH" – after spawn-in, the
creature will activate detect mode.

• "X2_L_SPAWN_USE_STEALTH" ‒ spawn-in using stealth
mode.

• "X2_SPELL_RANDOM" – make spell use more random, or

37 For a list of the available script groups, see the '2DA File...'
menu item under the View menu, type 'n' and then scroll down
to select nwn2_scriptsets. The NPC_Default scripts set is the
same as the scripts in the c_StandardScripts file.

38 For an example, see the Ambient Animations section of the
Waypoints blueprints.

39 See AnimPlayRandomAnimation() in the 'x0_i0_anims' file.
The type of random animation performed is determined by the
presence of certain waypoints. Thus, a Tavern Waypoint
makes the creatures perform tavern-like animations.

even inappropriate.
• "X1_L_IMMUNE_TO_DISPEL" – creature will be immune

to dispel magic. (Appropriate for statues.)
• "X2_L_IS_INCORPOREAL" – creature is able to walk

through other creatures.
• "X2_L_NUMBER_OF_ATTACKS" – set the number of

attacks per round, overriding the default for the BAB.
• "X2_L_BEH_MAGIC" – percent chance that the creature will

use magic in combat.
• "X2_L_BEH_OFFENSE" – percent chance to attack in

combat. A value of zero will make them flee.
• "X2_L_BEH_COMPASSION" – percent chance that the

creature will help others in combat.

If the “N2_SCRIPT_SPAWN_CREATURE” global string
variable is set to the name of a custom script, this script is
run every time a creature is spawned. A local string variable
named "SpawnScript" can be set on the creature with the
name of a custom spawn-in script. To help build this script,
select 'Custom OnSpawn' from the 'Add from Template'
menu in the Scripts tab of the A/C/S panel. This template
script contains a series of SetSpawnInCondition calls that
can be uncommented to configure specific behavior. Thus,
uncommenting the X0_COMBAT_FLAG_RANGED entry
will cause the creature to use ranged attacks during combat.

User Events

Some of the standard spawn-in condition flags will cause
an associated standard script to generate a user event, which
can then be handled by a script in the 'On User Defined
Event Script' property field. This allows you to use a single
custom script to process these events, rather than overriding
the individual scripts.

To handle the user events, the 'On User Defined Event
Script' property field should be overridden with a custom
script. For this, you can use a copy of the standard 'Custom
OnUserDefined' template script. The following list shows
the property fields that, when set to use the standard scripts,
can be flagged to generate user events. The associated user
event constant is listed next to the property field name.
• On Conversation ‒ EVENT_DIALOGUE
• On Damaged ‒ EVENT_DAMAGED
• On Heartbeat ‒ EVENT_HEATBEAT
• On Inventory Disturbed ‒ EVENT_DISTURBED
• On Perception ‒ EVENT_PERCEIVE

56

Creatures

• On Physically Attacked ‒ EVENT_ATTACKED
• On Spell Cast At ‒ EVENT_SPELL_CAST_AT

The 'On Death' script 'nw_c2_default7' can be customized
by setting a local string variable "DeathScript" to the name
of a script. There are no customization features for the
standard 'On Blocked', 'On End Combat Round' or 'On
Rested' scripts.

Visual Effects

There are a multitude of visual effects available, but only
some of them are useful with the 'Appearance (visual
effect)' setting on a creature. Here are some interesting
effects to try when you want to create a unique magical,
outsider or supernatural creature:

fx_akachi_pers fx_glowstone_blue_p
fx_animus fx_haven_song_hit
fx_bugswarm fx_ice_mephit_frost
fx_defaultitem_* fx_nolaloth
fx_e_soul_glow fx_oomany_dematerialize01
fx_e_telepathy02 fx_pois_dot_linger
fx_earth_elemental fx_reaver_immortal
fx_faithless_golem fx_shadowfiend_2

For supernatural glowing eyes, try these:
• orange-red: fx_death_knight_eyes, fx_wraith_eyes or

fx_lich_eyes
• blue: fx_erinyes_eyes
• yellow: fx_f_beetle_eyes or fx_hellhound_eyes
• violet: fx_helmedhorror_eyes

If you like flames on a creature:

fx_b_furnace_active fx_feat_blazing_aura
fx_b_shadow_of_void fx_fire_mephit_fire
fx_baldor_fire_aura fx_fireshape
fx_creature_onfire

Some spell effects can be used for unusual skin coverings:

fx_ironskin_chant_hit sp_ironbody
fx_moldskin sp_spiderskin
fx_thayan_golem sp_stoneskin
sp_barkskin sp_tortoise_shell
sp_body_of_sun

See the second volume for a list of effect descriptions.

Alternate Uses

Many creatures can have their tint changed, giving them a
different look in the game. Some creatures can be slightly
modified to serve a different purpose.
• Cat: Scale by x2.5 and modify stats for an ocelot.
• Clay Golem: change the skin tint to a fleshy hue, giving it

the likeness of a flesh golem.
• Panther: Change the skin/armor tint to white and scale it by

x1.1 to produce a near lioness.
• Skeleton: Scale by {2, 2, 1.5} and modify stats for a giant

skeleton. Try the various skin coverings for unusual
appearances.

• White Wolf: This magical beast can be scaled to x0.5-0.6,
stripped of its special ability, and suitably revised to
produce a normal sized wolf or dog with a white coat.
With the fx_animus special effect, it resembles a devil-
dog.

To create one possible interpretation of a sea nymph, I
make a copy of the Dryad and used the following settings:
• Appearance (visual effect) – fx_moldskin.
• First Name – Sea Nymph
• Tag – c_sea_nymph
• Inventory – spear, dagger.
• Alignment: Evil/Good: 100; Chaotic/Lawful: 0.
• Challenge: 7
• Ability Scores – Str 10, Dex 17, Con 12, Int 16, Wis 17,

Cha 19.
• Natural AC – 0
• Feats – Combat Casting, Dodge, Weapon Finesse
• Skills – Concentration 9, Diplomacy 2, Heal 9, Hide 9,

Listen 9, Move Silently 9, Spot 9.
• Special Abilities: Aura of Blinding; Gaze, Stunned;

Creeping Cold; Hypothermia; Hold Monster; &c.

Some interesting incorporeal creatures can be created by
copying the Mordenkainen Sword under the Special
blueprints, removing the sword from the inventory, then
setting a continuous and permanent effect in the
Appearance (visual effect) property. For example, try these:
• fx_akachi_pers
• fx_blackcloud
• fx_confusion
• fx_creature_onfire

57

Creatures

• fx_defaultitem_*
• fx_ethereal
• fx_fireshape
• fx_ghaststench
• fx_lantern_archon
• fx_nshore_bonfire
• fx_rockfly_fade
• fx_shadowcloak
• fx_will_o_wisp

Doors
Doors are wall or building features that can be used to

control access to other locations. When a door is opened, it
can act as a transition point between areas, or allow the
player to enter another part of an interior area. The available
doors are listed under the 'Doors' section of the Blueprints
tab, in the Selection panel.

Locks can be used to hinder the player from opening
doors, requiring a PC either to bash them down with attacks
or else use the Open Lock skill to unlock them. However,
an important door can be set to Plot mode, thereby
preventing damage from bash attempts. Likewise, a door
can be configured to require the use of a key to unlock it,
thus disallowing any unlock attempt. Such a key consists of
an item that must somehow be located by the player.

A trap can be set to increase the level of risk to the PCs
from opening specific door. These traps can be customized
by how challenging they are to spot, their level of difficulty,
and the amount and type of damage they incur. PCs may
spot these traps with the Search skill, then a character with
ranks in the Disable Device skill can attempt to disarm the
trap or even recover it.

In interior areas, most closed doors obscure the contents of
an enclosed space from the player's map. The exception is a
door with a barred opening; these are ignored for the
purposes of mapping. When a door is opened by the party,
the the area beyond the door immediately becomes mapped.
When designing an area, this is an important consideration
in terms of the information that will be revealed to the
player about an area.

Placement

Many exterior placeables come with doors already fitted in
their openings. For example, the 'Wall {City – gate 1}'
placeable is equipped with a '{City Gates Double Door}'
door. Others have a door opening that initially lacks a door
object, but will still allow a door placeable to be selected
from the Blueprints list and inserted into the opening. A few
buildings have door openings that are not suitable for a door

58

Doors

object, such as the 'Windmill (1 – TINT}'. The interior areas
have tile walls with empty door openings that can be filled
by adding a door placeable.

Because doorway openings vary in size, not every door is
going to fit into a particular opening without changing the
scale. Within the Blueprints list, the doors are grouped into
Exterior, Interior and Walls/Miscellaneous size categories,
with the interior doors being somewhat wider than Exterior
doors. There are also double doors for wide exterior
openings, and secret doors for interiors. Some of the interior
doors have barred openings, such as the Portcullis or Gate
doors, allowing a view of the area beyond. A few door types
have an arched top and are suitable only for certain building
openings such as 'Temple {evil}'.

After a door is selected, it can be placed in a doorway
opening. The toolset will cause the door to snap into the
opening when the cursor is in a certain proximity of the
doorway.40 It can be somewhat tricky to get the door moved
into the right location, but moving the cursor to the line
along the bottom of the door opening usually works. Once
the door is in place, left click to leave a copy in place then
press 'Esc'. The placed door can then be selected like any
other object in an area.

It is possible to reverse the direction that a door will open
by snapping the object to the left or right side of the
doorway. This requires selecting a lower corner of the door
and placing it to one side or the other of the opening. But it
can take patience to get it right. You can also set the door
partly ajar by using the Heading field of the properties. The
Door State field can be used to fully open the door.

If you are having difficulty selecting a door on a building,
try temporarily turning off the 'Placeables' option on the
'Selection' menu in the toolbar. This will prevent the
building from being selected by a click, allowing you to
choose the door instead.

Properties

When a door is left clicked in the Selection panel or in an

40 I couldn't find any means to reverse the door orientation so it
opens on the opposite edge. Doors only go into the openings
one way.

area, it's properties will be displayed as a list of parameter
names and values in the Properties panel under the
Properties tab. The properties are subdivided into
Appearance, Basics, Behavior, Lock, Scripts, Statistics,
Transition and Trap blocks. When a selected door is placed
in an area, a Misc block will also appear showing the
location information. Each block can be contracted or
expanded using the small plus/minus box at the left of the
header.

Appearance
• Appearance – This is a numerical identifier selected

from a menu. It determines the door size, shape and
texture.

• Casts Shadow – This has no effect because the door
does not cast a shadow when opened.

• Door State – By default this is closed, but it can be
set to open inward or open outward.

• Load Screen – During a transition, this is overridden
by the load screen for the area. (See the Transition
block below.)

• ReceivesShadows – This menu item determines the
types of light sources that cause shadows to be cast
on the door.

• Scale – This can be used to scale a door dimensions.
• Tint – None of the standard doors are tintable, so this

can usually be ignored. The exception is for some of
the secret doors, which need to be tinted in order to
blend into the surrounding surfaces.

Basics

After a door is placed in an area, several of these fields are
moved to the Misc block.

• Classification – This determines where the door will
appear in the blueprint tree. It is useful for
categorizing doors that are unique to your module.
Use the pipe character '|' to add sub-nodes.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing.

• Conversation – A conversation can be assigned to a
door, but this must be activated from a script. For

59

Doors

example, an 'On Open' script could start its
conversation with a ActionStartConversation function
call targeted at the object returned by the routine
GetLastOpenedBy.

• Faction – This is Hostile by default. The setting
appears to make no difference as to whether a door
can be bashed by the PC or not.

• Localized Description – This is the description that
appears when the door is examined. If nothing is
entered here, a default description will appear.

• Localized Name – If the door is not static, this is the
name that appears during a mouse-over of the door
during a game. Any string within curly brackets '{}'
will not be displayed.

• Resource Name – Is a unique, 32-character name that
serves as a blueprint identifier. It is normally used in
the CreateObject function call, but that function does
not work with doors.

• Tag – This string is often used in script commands for
identification and look-up purposes. There can be
more than one instance of an object with the same
tag. A unique tag is recommended when the door is
used as a transition point. (See the Transition block
below.)

• Template Resref – The resource name of the blueprint
template that this object inherits from.

Behavior
• Can Talk to Non-Player-Owned Creatures? –

Unknown.
• Interruptible – Unknown.
• Plot – If true then the door can not be damaged,

destroyed, or afflicted with status effects. This is
useful in combination with a 'key' requirement, per
the Lock section below. The players will be allowed
to make a bash attempt against the door, but the game
will report that the attack caused no damage.

• Static – If the door is static, it can not be interacted
with and is treated as an inert part of the wall or
building. Some like to use this flag to avoid confusing
the player about which buildings they can enter.

Lock
• Auto-remove key – If true, then this causes the key to

vanish from the PC's inventory after it is used to open
the door.

• Close Lock DC – The difficulty class that an Open
Lock skill check must overcome to lock the door.

• Key Required – If true then the PC must have a
specific key to open the door. Companions will not
attempt to unlock a door that requires a key.

• Key Tag – If a key is required, then this is the tag of
the key that is needed.

• KeyRequiredFeedbackMessage – The message to
echo back to the PC when they try to open the door
without the required key.

• Lockable – If true, then the door can be locked.
• Locked – If true, then the door is initially locked.
• Open Lock DC – The difficulty class that an Open

Lock skill check must overcome to unlock the door.
Typically, when a Rogue character attempts to unlock
a door, the system will apply a "take 20" to the skill
check. This means, for example, that a 1st-level
Rogue with a 16 Dex and 4 ranks in the Open Lock
skill will automatically be able to unlock a door with
Open Lock DC of 27, unless they are in a combat
situation.

Misc
• UV Scroll – This expandable field can be used to

causes the door skin to scroll in the direction and rate
specified by the values of U and V, when Scroll is
true.

Scripts

These are various event handler scripts. Note that most of
these events can only be triggered by a PC, and only while
the PC is the controlling character.

• On Click Script – this is run whenever the player
clicks on the door. If the door is configured as a
transition, then a script in this slot will cause the
transition not to occur.

• On Closed Script – this script runs when the door is
shut.

60

Doors

• On Conversation Script – this script doesn't run, even
if a conversation is launched using a script.

• On Damaged Script – runs this script when the door
is damaged.

• On Death Script – Run when the door is destroyed.
By default this is set to 'x2_door_death', which runs a
wooden explosion special effect after the door is
removed.

• On Disarm Script – this script runs when a trap on the
door has been disarmed.

• On Fail To Open Script – Runs this script when an
open lock attempt fails to open the door. This is also
run when the door is locked and the player attempts a
Use action. To simulate a conversation with
somebody on the other side of the door, you can use
the 'gp_talk_door' script here. This will run the door's
Conversation entry.

• On Heartbeat Script – Run this script every six
seconds.

• On Lock Script – Run this script when the door is
locked.

• On Melee Attacked Script – This is run each round
that a bash attempt is made against the door.

• On Open Script – Runs this script when the door is
opened by a Use or left-click.

• On Spell Cast At Script – this is run when a spell is
cast at the door, such as knock.

• On Trap Triggered Script – this script runs when the
door's trap is triggered.

• On Unlock Script – This script is run when the door
is unlocked.

• On Used Script – this didn't run on a right-click and
select Use.

• On User Defined Event Script – user-defined events
will cause this script to run.

• Variables – This can be used to define and initialize
local variables that are applicable to the door.

Statistics

These parameters are used for door bashing attempts.

• Current Hit Points – Usually the same as Hit Points,

prior to any bash attempts.
• Fortitude Save – This is the Fort save when the door

is subject to spells.
• Hardness – When the door is struck, it should absorb

this much damage before losing any hit points.
Unfortunately this feature does not work properly,
even though the game prints out a message about how
much damage was absorbed.41

• Hit Points – This is the total number of hit points that
must be lost before the door is destroyed.

• Reflex Save – This is the Reflex save when the door
is subject to spells.

• Will Save – This is the Willpower save when the door
is subject to spells.

Transition

These parameters allow the selection of an open doorway
by the controlling PC to initiate a party transition to a new
area. Note that a door that is destroyed as a result of a bash
attack will still provide a party transition.

• Link Object Type – This menu allows the door to
cause a transition to another door or a waypoint.

• Linked To – This is the tag of the object type selected
above. When this door is opened, so too is a linked
door.

• Party Transition? – If true, then the entire party will
be moved to the destination. Otherwise only the PC is
selected.

• Use Invisible Transitions? – I haven't seen a
difference between setting this field to true or false.

Trap

The following parameters apply to the door if the Trapped
field is true.

• Disarm DC – This is the difficulty class that must be
overcome with a Disable Device skill check in order
to disarm the trap. See the skill description in the
game manual for the applicability of the DC to other
actions. Note that Rogues don't take 20 on a Disable
Device skill check. A 1st level Rogue with a 14 Dex

41 For a work-around, see the 'Placeable Damage Bug Fix' script
in third volume.

61

Doors

(+2 skill Mod.), 4 ranks in Disable Device and the
Nimble Fingers feat (+2 skill Mod.) will have a 50%
chance of disarming a trap with a DC of 28.

• Trap Detect DC – The is the difficulty class for
finding a trap using the Search skill. Typically the
Trap Detect DC should be about the same as the
Disarm DC.

• Trap Detectable? – If this is false, the trap can not be
detected with the Search skill.

• Trap disarmable? – If this is false, the trap can not be
disarmed with the Disable Device skill. Companions
will not try to disarm traps that are not disarmable.

• Trap one-shot? – If false then the trap can trigger
more than once.

• Trap Type – This is a lengthy list of trap types that
determine the damage and special effect when the
trap is triggered. The types correspond to the traps
listed in the traps.2da file, which also contains values
for detecting and disarming the various traps. Only
rogues can disarm these traps.

• TrapActive – The door can be trapped but inactive.
The active state can be changed from a script by a call
to SetTrapActive.

• Trapped – Setting this to true will cause a trap to
trigger when the door is opened.

• TrapRecoverable? – If true this allows the recovery of
the trap as an item on a Disable Device at DC + 10.

Transition

Active doors can serve as a transition point to a different
area, which will cause the PC or even the entire party to
jump to the new location. Normally such a transition door
will be located on a building side in an exterior area, or a
single-sided door on an interior area. (That is, the interior
door does not open into another room in the same area.)

To configure a transition door, you first need to set up a
destination. This can be another non-static door, or a
waypoint. The destination B needs to be assigned a unique
Tag string so that it can be identified by the transition door
A. This tag should then be copied into the 'Linked To'

property of the door A, then the door's 'Link Object Type'
menu should be set to either 'Transition to a Door' or
'Transition to a Waypoint', depending on the destination
object B. If you want the entire party to transition with the
PC, set the 'Party Transition?' property of door A to true.

It is often logical to configure a pair of doors to transition
between each other. This is useful, for example, when
creating a building entrance that corresponds to a door on
an area interior. In some cases, it may make sense to place a
waypoint just beyond the door and use that as the transition
point rather than the actual door. This will avoid the
problem of awkward camera placement following the area
jump.

It may not be possible to match the style of a particular
exterior door with a corresponding interior door. However,
there are a few door styles that match up:

Interior Door Exterior Door

Standard Interior Door 2 Basic Door 3

Standard Interior Door 3 Basic Door 4

Standard Interior Door 4 Basic Door 5

Standard Interior Door 5 Basic Door 6

62

Doors

Here the elegant interior door '{Estate01 Door (X1)}' has
been scaled down to fit into the manor house doorway.

Secret Doors

Although secret doors exist, they are limited in their
usefulness because they will show up during the game
whenever the mouse is passed over the shape, or if the 'Z'
key is used. The scripting function calls don't include a
method to toggle the selectability of an object, and the
CreateItem() call can not be used to create a door so the
'gp_secretobject_hb' script can't be adopted for this purpose.
However, see the Concealed Passage section for an
alternative approach.

Stores
A store provides an inventory of items that can be

purchased by a character, as well as a place to sell
previously obtained items. Stores are normally associated
with NPCs and they are activated as the result of a
conversation. The properties of a store are configured with a
Store blueprint, and the toolset comes with a set of standard
store types that can be used within a module.

The store blueprints can be accessed from the Selection
panel by choosing the Stores tool from the Blueprints tab.
As with other blueprints, a store blueprint can be copied and
modified by selecting an existing store and right-clicking
'Copy Blueprint', or a new store blueprint can be created
from the same pop-up menu.

Within an area, a store is symbolized in the toolset by a
yellow arrowhead with a red flag. It is invisible during play.

Properties

When a store is selected in the Selection panel or in an
area, it's properties will be displayed as a list of parameter
names and values in the Properties panel under the
Properties tab. The properties are subdivided into Basics,
Behavior and Scripts blocks. When a selected store is in an
area, a Misc block will also appear showing the location
information. Each block can be contracted or expanded
using the small plus/minus box at the left of the header.

Basics

This block is mainly used for object identification. After a
store is placed in an area, several of these fields are moved
to the Misc block.

• Classification – This determines where the store will
appear in the blueprint tree. It is useful for
categorizing stores that are unique to your module,
such as when you want a collection a set of unique
creatures for an area. Use the pipe character '|' to add
sub-nodes.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing. In the toolset's stock stores, this

63

Stores

is often used to recommend a character level range.
• Localized Description – This doesn't seem to be used

for a store.
• Localized Name – This is the name that will appear in

the blueprints Name column.
• Resource Name – Is a unique, 32-character name that

serves as a blueprint identifier. It is used in the
CreateObject function call.

• Tag – The string used to reference the store from a
script or conversation.

• Template ResRef – The resource name of the
blueprint template that this object inherits from.

Behavior

This block determines the economic behavior of a store.

• “Will Not Buy” List – This is a list of items by Base
Item type that the merchant will not purchase from
the PC. Click on the ellipsis to open up a dialog that
will allow you to add Base Item types to the list. Any
items on this list can not be sold to the merchant;
although they will still be appraised.

• “Will Only Buy” – This is a list of items by Base
Item type that the merchant is willing to buy from the
PC. If this list contains any items, then those items
that are not on this list can not be sold to the
merchant.
Note that this field and the "Will Not Buy" List
parameter are mutually exclusive. If an item is on
both lists, then the “Will Not Buy” takes precedence
and items of that base type can not be sold. If both
fields are empty then the store will buy any items.

• Black market price percentage for buying items from
the player – If the Black Market flag is true, the store
will buy black market goods at this percentage of the
normal price.

• Black Market – When this is set to true, the store will
buy stolen or black market goods from the PC.
Otherwise the player will get an error message when
they try to sell such an item.

• Identify price – The is the cost in gold pieces to
identify a magic item for the player. A value of -1

will disable item identification. Note that the cost of
an identify will be listed as 100 gp in the player's
pop-up menu, but the actual cost of the item will be
shown in the item description.

• Maximum Buy Price – The merchant will not spend
more than this amount to purchase an item from the
player.

• Price percentage for buying items from the player –
This is the percentage of the full item price that the
merchant will pay for an item. Normally this is set a
value below 100.

• Price percentage for selling items to the player – This
is the percentage of the full item price that the PC will
pay for an item. Typically this is set above 100.

• Store Gold – The merchant has this total amount of
gold on hand for the purchase of items.

Scripts

These are the available event handler scripts.

• On Close Store Script – This script is run when the
store is closed. It could be used, for example, to
adjust the store parameters in response to the PC's
purchases and sales.

• On Open Store Script – This script is run when the
store is opened. It could be used, for example, to
modify the store's maximum gold or identify cost
based on special circumstances. The store inventory
consists of item templates, so you can not apply
variables to the items using a script until after they
have been acquired by the PC.

• Variables – This field can be used to preset variable
values for use in scripts. Select the row then click on
the ellipsis to set the variable names, types and
values.

In these scripts, the OBJECT_SELF parameter is the store
itself, rather than the merchant. The store parameters that
can be modified by a script are the amount of gold
available, the cost to identify an item, and the maximum
price that will be paid for a purchase.

Unfortunately, in the versions prior to patch 1.13 it was
not possible to modify the inventory of a store once it has
been configured. Instead, multiple stores must be used to

64

Stores

vary the inventory. A patch added the ability to view and
modify the store's inventory via a script, allowing the stock
to be updated over time.

Store Tab

Once a selected store's properties have been set, you can
modify the items that are available for purchase by selecting
the Store tab in the Properties panel. At the bottom are tabs
for the same five categories that are shown to the players:
Armor, Miscellaneous, Potion, Ring and Weapon. For each
of these tabs, you can click on the 'Edit...' button at the
bottom of the panel to update the list.

The store editor is not selective about what items you add
for each category. Thus you could, for example, choose a
scroll and add it to the armor category. However, the scroll
will always appear in the miscellaneous section when a
character is interacting with the merchant. Thus the toolkit
categories are there mainly for your convenience. (See
Lazjen's CPS Inventory Manager Plugin for a tool that
addresses this and other issues.)

Each item entry in the Store has an 'Infinite' check box.
Selecting this box will mean the store can sell an unlimited
number of these items. Otherwise it can only sell the entry
one time unless it is restocked by a script.

While you are modifying the Store contents, you will not
be able to view the details of the items you are adding or
removing. However, the Named Items chapter of the second
volume can be used to gauge the cost and relevance of the
magic items. You will also want to decide whether to
include or exclude items that are in the store's “Will Not
Buy” or “Will Only Buy” lists.

Many stores have a theme that depends on the type of
business being run by the merchant. This is reflected by the
standard stores types available in the toolset. For a
consistent campaign setting, it may be useful to build
specialized stores for particular products. Thus a leather
worker could sell only leather armor, hide armor, slings,
leather clothing and belts.

Creating a Store

The addition of a store to a module involves more than
simply placing a store object in an area. First, you will need
to add a creature or suitable object to interact with the PC.
Usually this is an NPC that is configured to serve as a shop
keeper. To avoid issues with faction attitudes toward the
party, it is usually a good idea to change the merchant
creature's Faction ID setting to 'Merchant'.

Next, a conversation needs to be created in the A/C/S
panel, then it must be inserted into the merchant creature's
Conversation property field. One of the end branches of this
conversation should be configured to launch the store. This
is done by selecting a red [END DIALOG] entry, then
choosing the Action tab at the bottom and adding the action
script 'ga_open_store'. After clicking refresh, set the sTag
field of the action to the tag of the store blueprint created
earlier. This action also contains fields for marking up or
marking down items, which can be set appropriately based
on the conversation choices of the character or other branch
conditions.

A store 'test_store' is opened by this conversation

Finally, the completed store object must be place in the
same area as the merchant; by convention this is placed on
the floor directly under (or near) the merchant creature. This
location makes the association obvious and the store object
easy to find.

When the store is opened via the 'ga_open_store' script in
the game, an opposed Appraise check will be made between
the merchant and the speaking PC. The outcome will adjust
the costs up or down accordingly. (This will be further
modified if charm or dominate spells are in effect.)

Examples

In addition to the standard stores available with the toolset,

65

Stores

some potential store types include:

• Artificer – Mechanism parts, trap kits, crossbows,
skeleton keys and thieves tools. Will buy broken
items.

• Bowyer/Fletcher – Bows, bolts and arrows.
• Exotic arms dealer – All types of exotic weapons,

monk gear, cursed items, and rare items with racial or
alignment restrictions. (Example: storm armor of the
Earth's children.) Only buys items of comparable
types, but may also be a black marketeer.

• Glass blowers – Empty ale stein, empty spirits bottle,
empty wine bottle, magical potion bottle.

• Herbalist – Belladonna, choking powder, distilled
alcohol, garlic, glands, healer kits, poison and venom.

• Instrument maker – Bandore, drum, fife, flute, lute.
May have a few bard scrolls.

• Jeweler – Gems, necklaces, rings, crowns, circlets
and stones. Store is well guarded.

• Leatherworker – Items primarily made of leather:
armor, boots, helms, gloves, belts, pouches, bags,
scabbards, quivers, slings and some light shields.

• Library Arcanum – Recipe books and arcane scrolls.
Often only buys books and scrolls.

• Money lender – Loan money for collateral and
interest. May have a few special items from clients
who didn't return the loan.

• Necromancy peddler – Necromantic scrolls, poison,
toxins, skulls, fangs and undead remains. May also
sell some necromantic scrolls, weapons and other
items. Often pays well for tomb robbing.

• Outfitter – Axes, belts, boots, cloaks, daggers, gloves,
light armor, shields, spears. May sell maps.

• Pub – Ale, distilled alcohol, stein, spirits and wine.
• Scrivener – Blank scrolls and (non-recipe) books.
• Tailor – Items primarily made of cloth or felt: armor,

clothing, rags, robes, cloaks, hats and gloves.
• Trapper – Hides, pelts, fangs, tusks, tanglefoot bags

and trap kits. Knows good hunting locales.
• Woodworker – Light wooden shields, clubs, staves,

some spears and planks.

Your module could also include, for example, a black
marketeer, a specialty collector, a magic auctioneer or an
itinerant merchant. Specialized magic stores may only sell
items created by a school of magic, such as abjuration or air
elementalism. Specific races may sell magic items favored
by their people. Notices may be posted announcing the sale
of a magical item. Magic item bounty hunters may seek
long lost relics, while also trading minor items. Some stores
may require membership with an elite guild or secret group
to gain access.

Note that as a campaign progresses, the player will
accumulate more gold and so be able to purchase items with
greater power. The availability of items in the stores will
often need to be adjusted to reflect this. Early in the game,
the party should usually be able to purchase alchemical
supplies and various expendable items such as arrows or
basic potions. At low levels, permanent items will often be
rare and expensive, so they must usually be acquired by
adventuring.

For realism, powerful magic items usually require that the
player find an exclusive source. Thus, the PC may need to
travel to a major metropolis that is home to more powerful
wizards and priests, allowing expensive items to be
manufactured These sources will often be located in the
wealthier parts of the city, and be well defended against
thieves. Alternatively, rare items may be sold by scavengers
at ancient ruins, in the relatively inaccessible abode of
magically powerful beings, or by higher level NPCs.

66

Placeables

Placeables
Placeables are typically objects that represent physical

structures in an area. They include buildings, curbs, walls,
balconies, furniture, decorations, containers and natural
features. Most placeables are inert props that serve only to
occupy a volume in the game world and provide decoration,
although a few are usable and can be activated or opened.
Some placeables are animated, such as some of the ships
and the windmills.

The placeables are sub-divided into five general
categories. The 'BUILDING PROPS' are placeables for use
in exterior areas. This category includes various buildings,
ships and curbs. Buildings are generally inert objects, but
they can have framed openings where a door can be placed.

The 'MANMADE PROPS' category contains placeables
that can be used in both exterior and interior areas, and
includes balconies, containers, walls, workbenches, corpses,
furniture, signs, and magic portals. The scale of the man-
made props ranges from a pair of dice up to wagons.
Containers can have an inventory of items, allowing them to
be looted or used for storage.

A third category is the 'NATURE PROPS' which can be
used to add details to a natural interior or exterior area. This
includes various rocks and boulders, vegetative growths,
roots, wyvern nests and waterfalls. The 'Mask of the
Betrayer' expansion added various snow-covered placeables
that can be used in a wintry outdoor setting. 'Storm of Zehir'
includes an overland map props category containing
miniaturized outdoor placeables for use with the overland
map. Finally there are some special purpose props that are
similar to waypoints, except that they can run scripts.

Properties

When a placeable is selected in the Selection panel or in
an area, it's properties will be displayed as a list of
parameter names and values in the Properties panel under
the Properties tab. The properties are subdivided into
Appearance, Basics, Behavior, Lock, Misc, Saving Throws,
Scripts, Statistics and Trap blocks. When a selected store is
in an area, the Misc block will be expanded to include the

location information. Each block can be contracted or
expanded using the small plus/minus box at the left of the
header.

Appearance
• Appearance – This is a numerical identifier selected

from a menu. It determines the placeable size, shape
and texture.

• Appearance (special effect) – Some of the visual
effect files can be applied to objects.

• Body Bag – This isn't used.
• Casts Shadows – Define the types of shadows cast by

the placeable.
• Container UI Screen – This doesn't seem to make any

difference.
• OpenState – This will determine whether a container

is initially open or closed. The default state is closed.
• Receives Shadows – The types of shadows it can

receive from other objects.
• Scale – This can be used to scale a placeable's

dimensions. This may be useful for creating scaled
furniture in communities of giants, gnomes or
halflings.

• Tint – Selected placeables can have their tints
adjusted. These are usually indicated by a 'TINT' in
the Localized Name.

Basics

After a placeable is placed in an area, several of these
fields are moved to the Misc block.

• Classification – This determines where the store will
appear in the blueprint tree. It is useful for
categorizing stores that are unique to your module,
such as when you want a collection a set of unique
creatures for an area. Use the pipe character '|' to add
sub-nodes.

• Conversation – A conversation can be assigned to a
placeable, but this must be activated from a script.

• Faction – This is Hostile by default, presumably
allowing the placeable to be attacked without causing
conflicts with the other factions.

• Localized Description – This is the description that

67

Placeables

appears when the placeable is examined and the static
field is set to false. If nothing is entered here, a
default description will appear.

• Localized Name – This is the name that will appear in
the blueprints Name column, and this will show on a
mouse-over if the item has the 'Useable?' field set to
true.

• Resource Name – Is a unique, 32-character name that
serves as a blueprint identifier. It is used in the
CreateObject function call.

• Tag – The string used to reference a non-static
placeable from a script or conversation.

• Template Resref – The resource name of the blueprint
template that this object inherits from.

Behavior
• Blocks Line of Sight – If true then the object will

block the line of sight of a creature. Line of sight is
used to determine if a creature can spot enemies or
objects.

• Can Talk to Non-Player-Owned Creatures? –
Unknown.

• Default Action Preference – This selects the cursor
type that is displayed when the cursor is moved over
the object. The available types are: Automatic, Bash,
Disable Trap, Examine and Use.

• Dynamic Collisions – If the object is non-static,
setting this to true will prevent creatures from moving
through or over this object. This can be combined
with 'Useable?' to allow a placeable to be used but
prevent creatures from moving through it.

• Has Inventory? – If the placeable is non-static and
usable, then setting this to true will allow a player to
access the inventory by clicking.

• Interruptible – Unknown.
• Inventory Size – If the 'Has Inventory?' is set to true,

then this is the maximum number of inventory slots
that can be used in this placeable. By default this is
136 for the containers.

• Plot – If this is true then the placeable is essential for
forwarding the plot, and so it is not subject to status

effects and can not be damaged or destroyed. The
players will not have a bash option when they shift-
right click on the placeable.

• Receives UI Projected Textures – This field is locked.
• Static – If this is set to true, then the placeable is for

all intents and purposes an unchangeable part of the
terrain. Any inventory is inaccessible, and the object
can not be destroyed or have dynamic collisions.

• Useable? – If the cursor is moved over the item then
the placeable will highlight and the player will be
able to perform a 'Use' action on it.

• Walkable – If true, this allows creatures to move
through the placeable as though it were illusory. It is
primarily for static placeables, since non-static
placeables are walkable unless Dynamic Collisions is
set to true.

Lock

These fields are useful for creating locked containers.

• Auto-remove key – If true then this causes the key to
vanish from the PC's inventory after it is used to open
the container.

• Close Lock DC – The difficulty class that an Open
Lock skill check must overcome to lock the container.

• Key Required – If true then the PC must have a
specific key to open the container. Companions will
not try to unlock containers that require a key.

• Key Tag – If a key is required, then this is the tag of
the key that is needed.

• KeyRequiredFeedbackMessage – The message to
echo back to the PC when they try to open the
container without the required key.

• Lockable – If true, then the container can be locked.
• Locked – If true, then initially the container is locked.
• Open Lock DC – The difficulty class that an Open

Lock skill check must overcome to unlock the
container.

Misc
• UV Scroll – If the Scroll field is set to true in this

expandable entry, then the surface texture will scroll
across the placeable surface at a rate determined by

68

Placeables

the U and V settings. In most cases this is not useful
for a placeable.

Saving Throws
• Reflex Save –
• Will Save –

Scripts

These are the available event handler scripts for a non-
static placeable. Most of these events can only be triggered
by a PC, and only while the PC is the controlling character.

• On Closed Script – run on closing the inventory.
• On Conversation Script – this is not used. To initiate

a conversation with a placeable that is non-static,
usable and has no inventory, you can place
'nw_g0_convplac' (or a comparable script) in the
object's 'On Used Script' field. Doing so will use the
value in the placeable's Conversation property.

• On Damaged Script – this script is run each time the
placeable is successfully attacked, even if the
Hardness absorbs all of the damage or the current hit
points fall below zero.

• On Death Script – this is run when an object is
destroyed, such as by a bash attempt or a spell.

• On Disarm Script – this event script is run if a trap is
successfully disabled on the placeable.

• On Heartbeat Script – if the placeable is not static,
this script will run every six seconds.

• On Inventory Disturbed Script – this script is run
each time an item is added or removed from a
placeable's inventory.

• On Left Click – if the placeable is usable, run this
script when it is clicked.

• On Lock Script – if the placeable has the 'Lockable'
property set to true, then this script will be run when
the container is locked.

• On Melee Attacked Script – this is run each time a
non-static placeable is attacked using a melee
weapon.

• On Open Script – this runs when the container is
opened.

• On Spell Cast At Script – this is run when a target-

specific spell is cast at the placeable. A spell like
magic missile will trigger this script, while sleep does
not. It ignores spells cast by NPCs.

• On Trap Triggered Script – this script runs when a
trap is triggered on the placeable.

• On Unlock Script – this script is run when the object
is manually unlocked. Typically this would be used
on a container. To award XP for unlocking a door or
container (perhaps one with a trap), set this to
go_xp_lock. (The XP is three times the unlock DC.)

• On Used Script – this is run when a placeable is
flagged as Useable and then is used. For a container it
runs when the inventory is opened and when it is
closed. See the 'On Used Scripts' section below.

• On User Defined Event Script – user-defined events
will cause this script to run.

• Variables – this can be used to define and initialize
local variables that are applicable to the placeable.

Statistics

If a placeable is not static and does not have the plot flag
set, they it can be destroyed by a bash attempt. Any
inventory will be deposited on the ground.

• Current Hit Points – Usually the same as Hit Points.
• Fortitude Save – This is the Fort save when the

placeable is subject to spells.
• Hardness – When the placeable is struck, it will

absorb this much damage before losing hit points.
Unfortunately this does not work, even though the
game prints out a message about how much damage
was absorbed.42

• Hit Points – This is the total number of hit points that
must be lost before the placeable is destroyed.

Trap

These fields are useful for creating trapped containers. The
following parameters apply to the placeable if the Trapped
field is true. See the Doors blueprint section for a
description of the fields.

42 See the third volume for a work-around.

69

Placeables

Toolset Collections

Among the toolset placeables are several groups that share
consistent visual styles. Examples include the bar pieces,
bookcases, booth seating, cages, crates, jail and theater prop
sets, all of which can be used for interior decoration.
Objects from these groups can be located together to form
various flexible combinations.

There are collections of placeables that perform a similar
function:

• Balconies – Located in their own section (under
MANMADE PROPS), these placeables can be used
to create elevated traversable surfaces. There are a
number of pieces available and you will need to
experiment before you find the right piece for a
particular location. (In general, the higher the number
on the tag, the larger the balcony.) Several of the
wooden 'Balcony Piece' placeables lack a back railing
and are best used against the wall of a standard
interior.

• Boulders and rocks – The NATURE PROPS section
contains tintable boulder piles and rock faces. These
are useful for creating natural rock fields on an
outdoor area or in a cave tile, as they can be scaled to
the required size and then tinted to blend into the
surrounding features.

• Bridges – The available bridge pieces are the 'bridge'
and 'dolphin bridge' in the BUILDING PROPS
section. The dock pieces can also serve as a bridge,
particularly the slum piece. Various linear makeshift
bridges can be produced by converting the placeables
to environmental objects, then covering the group
with a Walkmesh Helper from the misc props.

• Building sets – These sets include the dock row
houses, merchant row houses, Mulsantir houses, rural
houses, slum row house, sunken city ruins and swamp
houses. Most of the building sets are tintable, so you
can give them a common color style or even use a
variegated color scheme. Some of the building sets
have matching copies that show burn damage,
allowing a particular settlement to be transformed
into a torched village with suitable visual effects.

• Cards – The city and merchant row house sections of
the building props contain flat placeables that can be
used as background filler. These should be placed in
inaccessible parts of an exterior map to fill in holes
along the player's line of sight.

• Containers – Under the MANMADE PROPS section
of the blueprints is a CONTAINERS subsection with
a list of containers. These are configured with their
inventory field enabled and they will animate when
opened or closed. To stock a container with items,
you will need to place it in an area, select it and
choose the Inventory tab on the Properties panel. This
interface allows you to add various items and to
customize their properties and appearance.
Note that any of the other placeables can serve as a
container. To do so, set the 'Has Inventory?' and
'Useable?' properties to true, and the 'Static?' property
to false. Particular examples of container-type
placeables include armor racks, bags, barrels,
bookcases, cabinets, crates, the desk and liquor
cabinet, potion sets, shop counters and weapon racks.
However, these items will not animate in the same
manner as a CONTAINER blueprint.

• Curbs – There are two types available in the CURBS
subsection of BUILDING PROPS: flat and raised.
Both types can result in impassible areas of the map
following a bake, so it may help to convert them into
environmental objects. However, for the raised curbs,
this will result in an unrealistic effect as creatures will
move across the mesh surface rather than the curb.
You can address this problem by locking the curb
height and position, then carefully raising the surface
mesh beneath the curb using the Flatten terrain tool.
However, it may prove easier to flatten the entire
surface that is touching the curb, then use a small
brush to lower the curb edges down to the normal
surface elevation.

• Dock pieces – Underneath the BUILDING PROPS
folder is a collection of different dock shapes that
share a consistent style. However, if you attempt to
link them together to form long dock sections, you
will very likely experience problems during baking.

70

Placeables

(See the Exterior Areas section for more details.) The
best option for an extended dock is to use the 'Dock
{Large}' piece and design your waterfront around it.
Alternatively, a long straight dock can be covered by
a Walkmesh Helper.

• Fallen trees – There are five fallen trees in the
NATURE PROPS section. You can get more mileage
out of these by varying the scale, lowering them part
way into the ground and partly covering them with
uneven ground.

• Floor coverings – These are placeables with a low
height setting that can be used to decorate the floor.
Manmade floor coverings include: arcane circles,
blankets, blood stains, dias, floors, floor mats,
floorprop, plates, rugs and tarps. These are useful for
breaking up the monotony of an open floor area. In
the NATURE PROPS are the caves cobble piece,
dirty cave floor, mines cobble piece and water planes.
Typically these coverings can be converted to
environmental objects. The exceptions are pallets and
planks, which have some altitude so they are better
left as placeables.

• Ships – The available vessels are the cargo ship,
fishing ships, the grey ghost ship, several row boats, a
ship ferry and a warship. Several ships are animated,
so they appear to roll slightly in the water and are
ideal for a dock scene. However, the ships are not
designed to be walked upon, so any interactions with
the vessel's crew will need to occur on the land or
possibly in an area representing the below decks.
Note that there is a cargo ship under the placeables
category of the creatures blueprints, which can travel
about and so be used as a wandering ship. (The
underwater surface needs to be at a constant height
for this to work properly.)

• Signs – Although some of the buildings have signs,
these are inactive and can not be selected. Instead
there are a variety of signs available in the
MANMADE PROPS that can be placed next to
establishments. By default these are static. When
'Static' is set to false, the value in the 'Localized
Name' will appear during a mouse-over in the game.

You should also set 'Dynamic Collisions', 'Plot' and
'Useable' fields to true.

• Walls – The WALLS section under the MANMADE
PROPS includes several sets of consistent wall styles.
The three rural fence styles allow fences to be built
on sloping terrain, and can be used for guide rails on
steep paths. However, it will take careful adjustment
to fit these fence pieces together. The iron fence and
stone walls are useful for fencing off a private yard,
while the keep wall, city wall, mulsantir wall, rural
fort and thayan wall sets are designed for an outer
wall around a settlement or fortification.

• Wall Decorations – Among the MANMADE PROPS
are placeables that can be used for covering walls:
banners, curtains, logram banners, masks displays,
mosaic art, paintings, plaques, shelfs, tapestries, torch
and some lamps. When located next to a wall, these
can usually be converted to environmental objects.

• Workbenches – These MANMADE PROPS are for
use with the game's crafting rules. Each is usable and
allows an inventory. The function of the workbench
is determined by the object tag or a variable setting in
the Scripts block of their properties.

Crafting Items

The crafting system allows characters with the correct
combination of skills, levels, inventory, feats and spells to
construct new items. The workbenches can be used to
manufacture magic items. These items are created
according to formulae listed in recipe books that can be
placed in a module for a player to discover or purchase.
(Note that these recipe books do not server as triggers for
constructing items; they are informational only. This
information could also be provided by some other means,
such as through a conversation.)

By default, the recipes for building these new items are
retrieved by reading the recipe from the 'crafting.2da' file.
Alternatively, the recipes can be stored in variables by
running the 'ga_setrecipes' script at some point prior to the
player attempting to use them during the game, such as
during a module load. If the global variable 'RecipesSet'

71

Placeables

(defined in 'ginc_crafting') is set to a nun-zero value, the
recipes are retrieved from memory rather than from the 2da
file.

As an example, The Book of Seeing recipe book includes a
formula for creating a Gem of Seeing. Internally, the recipe
for this item is defined on lines 1164-65 of the
'ga_setrecipes' file, and on row 247 of the 'crafting.2da' file.
The gem's reagents list consists of the tags 'cft_gem_15' for
the King's Tear gemstone and 'cft_ess_air2' for the Weak
Air Essence, respectively. The CreateWondrousRecipe()
routine is called to set the recipe for the item. The input
arguments for this routine consists of the spell true seeing,
the reagents list above, the tag X0_IT_MSMLMISC04 for
the Gem of Seeing, and the minimum required level of 10.

To perform alchemy, the Mortar and Pestle item is used.
This has a matching tag-based script called 'i_mortar_ac'
that is run when the item is activated. This calls the
DoAlchemyCrafting() routine from the 'ginc_crafting' file,
which checks for a valid Alchemy workbench. This can be
any usable placeable that has the 'WB_alchemy' variable set
to a non-zero value (or any of the standard Alchemist's
workbenches). If this is a workbench, a check for a valid
alchemy recipe is checked against the list input with the
'ginc_crafting' file. On a match, the ingredients are removed
and the crafted item is created.

Smithing uses a similar approach, but requires the
blacksmith's hammer, a basic crafting item. The matching
tag-based script is 'i_smithhammer_ac', which calls
DoMundaneCrafting() to implement a mundane recipe. An
example of an item that can be created by this means is the
Mithral Dwarven waraxe.

The magic crafting system is triggered when a spell is cast
at a usable, non-static placeable with the 'ga_forgemagic_ca'
script in the 'On Spell Cast At Script' property field. (An
example of this is the Magician's Workbench placeable.)
This script calls the DoMagicCrafting() routine in the
'ginc_crafting' file, which checks whether there is a
matching recipe for the combination of spell cast and the
inventory in the placeable. If there is no such recipe, the
message "Crafting failed! This is not a valid recipe" is
printed. Otherwise, if the caster has the required feat and

level, the required inventory is destroyed and the enchanted
item is created in its place.

In the Mask of the Betrayer campaign, the Enchanter's
Satchel basic crafting item can be used to enchant an item
with up to three or four item properties. The matching tag-
based script is 'i_nx1_container01_ci'. This runs the script
'gr_domagiccrafting', which calls the DoMagicCrafting()
routine described above. The types of enchantments that can
be added are described in the item descriptions for the
Brilliant and Pristine elemental essences. Note that this
expansion use a different set of essences with different
names and tags.

Miscellaneous

The following placeables are available under the
miscellaneous props (MISC PROPS) section.

Collision Ball and Box

The Collision Ball and Collision Box are non-static,
invisible objects that have their Dynamic Collisions
property set to true. After a collision object is placed in an
area, you can find it again by setting the 'C3 Data' field on
the toolbar's Collision menu, or selecting the object from
the Area Contents panel. In a game setting these objects will
create invisible obstructions that will only be apparent if a
player attempts to move into their location. They can be
used, for example, to create barriers that can be removed by
a script. (See the DestroyObject call in the second volume.)

An alternative use for the collision box is to make a
portion of a placeable selectable, such as the hanging sign
on a building. To do this, create the collision object and
change the scale so that it fits just around the area to be
selected.43 The Interruptible, Plot and Usable properties
should be turned on and the Dynamic Collisions should be
turned off. The Localized Name property should be changed
to the name that will appear in the game and the Localized
Description to the description that will appear on an
examine action by the player. You might want to change the
Default Action Preference to something suitable like

43 For example, a collision box surrounding a building's hanging
sign may have a scale of 0.75, 0.1, 1.1.

72

Placeables

'Examine'. Note that the collision object will not light up
during a mouse-over, but the Localized Name will appear
above the object.

Ipoint

The description for the Ipoint placeable says it is used a
location for placing sounds with a script. Thus, for example,
a PlaySound call can be made from a script that is run from
one of its Scripts properties. Alternatively an Ipoint can be
referenced for its location using a GetLocation call. An
Ipoint can also be used for visual effects, whether by setting
the 'Appearance (special effect)' property or making an
ApplyEffect* call from a script. See the Effect Files section
of the second volume for descriptions of the visual effects.

There are two variations of the Ipoint placeable:

• The 'Ipoint Cleaner' placeable is used to clean up a
combat cutscene. It uses 'gp_ipcleaner_hb' as a
heartbeat script.

• The 'Ipoint Speaker' is a placeable for running a
conversation. It uses 'gp_ipspeaker_hb' as a heartbeat
script, which calls the IPSpeakerHeatbeat routine in
'ginc_ipspeaker'. The conversation is initiated if the
PC is in the same area as the placeable and the
conditions are currently safe.

Gold Pieces

Sometimes you will want to include a stack of gold pieces
in a container, such as a treasure chest. One method of
doing this is to create an Item that consists of a stack of gold
pieces. Typically this would consist of a round number so
that you can re-use the same stack in multiple containers.

To create a stack of 100 gold pieces, first go to the Items
blueprints and create a new module blueprint. This item
should have the following properties:

• Icon: it_gold
• Base Item: Gold Piece
• Classification: Miscellaneous|Gold
• Localized name: 100 Gold Pieces
• Quantity: 100

When editing a container inventory, you can now add this
item to provide 100 gold pieces when selected by the

player. Creating items with multiple gold piece amounts
will allow you to provide different allotments.

Lever, Useable

This is a placeable that provides an operational lever. For
this object to perform a useful action, a script should be
provided in the 'On Used Script' field. The lever can be
animated with an ActionPlayAnimation call in this same
script. For example:
void main() {
 // Animate the lever
 ActionDoCommand(ActionPlayAnimation(
 ANIMATION_PLACEABLE_ACTIVATE,
 1.0f, 0.5f));
 PlaySound("as_sw_lever1");
 DelayCommand(0.5f, ActionPlayAnimation(
 ANIMATION_PLACEABLE_DEACTIVATE
 1.0f, 0.5f));

 // Execute "LeverAction" script, if set
 string sLeverScript = GetLocalString(
 OBJECT_SELF, "LeverAction");
 if (sLeverScript != "")
 ExecuteScript(sLeverScript,
 OBJECT_SELF);
}
At the end of the call, a check is made for a string variable
named "LeverAction". If this variable set on the lever,
activating the lever will cause the script with the matching
name to be executed. The Local Description property
should also be modified to provide a description of the
lever. This will appear if the player performs an Examine on
the lever in the game.

Secret Object

The Secret Object is a special purpose, invisible placeable
that can be used to reveal a hidden object when a character
makes a successful search skill check. This is implemented
through a heartbeat script 'gp_secretobject_hb' and a set of
local variables on the object. First, this script checks to see
if a search is successful, then it creates a new object at the
location of the placeable.

Here are the variables that can be set on the Secret Object:

73

Placeables

• SearchRadius – This is the maximum search radius.
The creature must also be within the line of sight of
the placeable location.

• SearchDC – The difficulty class of the Search skill
check.

• SearchDCDetectMode – This is the difficulty class
when the creature has Detect Mode active. Elves
automatically use this mode.

• SecretObject_ResRef – The template resource
reference string of the hidden object to create upon
discovery. This can be a creature, item or placeable,
but it can not be a secret door.

• NewObjectTag – The tag string to give the newly
created object.

• VisualFX – This is the ID of the temporary visual
effect to apply to the revealed object for 10 seconds.

• ReplacedObjectTag – This is the tag string of an
object to destroy when the search is successful.

• JumpDestinationTag – This appears to be intended
for secret doors.

• TimeToReset – If this is non zero, the objects will be
put back the way they were and the placeable will
reset itself.

• RunScript – If this is not a null string, the script
matching this name is run when the hidden object has
been revealed.

• Class_Restriction – This is not used by the script.

Concealed Passage

Using the 'Secret Object' placeable above, it is possible to
create a secret passage that will not show up on the players
map and may not be immediately apparent within the game.
This works especially well with the caves tile set.

• Begin with a doorway in an interior area. On the
other side of this door place a two-door room tile,
such as 'Door{2_Door_Room_Variant}' and place a
closed door in the second opening. (The original
doorway should be left open.)

• In the 'ESTATE TILESET' is a 'Lid {Estate Tileset 01
(X1)}' placeable. This can be used to hide the small
room. The scale of the lid needs to be changed to '3.1,

3.1, 1' and the placeable should be situated over the
room so that it is completely concealed. Once you are
satisfied with the placement, modify the last field of
the 'Position No Snap' property to a value of 50 and
set the 'Height Lock' to true. Set 'Static' and
'Walkable' to true or else the passage will be
impassible.

• The 'WALLS' category of the 'MANMADE PROPS'
contains a '{TileBlock 01}'. A copy of this placeable
should be placed so as to fill the room, but not poke
through into the player's starting area. Set 'Static' and
'Walkable' to false and give it a unique tag.

• Conceal the outer doorway opening with one or more
suitable placeables. The 'Walkable' properties on
these placeables should be set to true.
In the caves tile set, you can use one of the tintable
Rock Face placeables and scale it to about 22% of
normal. Once the tint matches the cave tile hue, it
should be virtually indistinguishable from the
surrounding rock face.
For a standard interior, a pair of bookcases may serve
here, such as 'Bookcase {013 – TINT}' and 'Bookcase
{014 – TINT}'. But you will need to increase the
vertical scale on these objects to cover the door.

• Place a 'Secret Object' next to the opening. Set the
'ReplacedObjectTag' variable to the tile block tag.

Now the Secret Object will check for discovery and will
remove the TileBlock placeable on success, thereby making
the concealed room visible within the game. Unfortunately,
the Lid will prevent the room from ever showing up on the
map, but that is unavoidable.

Walkmesh Helper

These placeables provide an invisible walking surface that
can be used to bridge a gap in the floor. They can also be
used as traversable surfaces to span elevated placeables,
such as multiple bridge or dock sections that have been
changed into environmental objects. The difference between
the two built-in walkmesh helpers is the sound made when a
creature moves across the surface. You have a choice of
wood or stone footstep sounds.

74

Placeables

The size of the walkmesh helper is modified with the
Scale property. You will need to try different values to find
the rectangle that is suitable for a particular purpose. The
rectangular surface outline of a walkmesh helper can be
modified with the walkmesh cutter in the Triggers
blueprints. Each region where you place a walkmesh cutter
will be act as a blocking object, preventing creatures from
entering. Thus, for example, if the walkmesh helper is
covering an irregular surface, such as a series of boulders
spanning a river, then you can use the walkmesh cutter to
remove the areas where the PCs are not allowed to enter.

You may need to experiment with the placement of a
walkmesh helper to make it bake properly. If the object is
placed too far above the surface, a walkmesh helper area
can result in unnatural changes in a PC's vertical position.

On Used Scripts

The toolkit includes several custom scripts that can be
used in combination with placeables. These scripts begin
with a prefix of 'gp_' and they are typically placed in the 'On
Used Script' field of a placeable that has the 'Useable?'
property set to true.

• gp_plc_to_item_us – This script causes the associated
object to self-destruct, then places an item in the
inventory of the creature that executed the use action.
The placeable's sRR local string variable contains the
template of the item that will be created. Thus, for
example, the 'Armor Pile {01 (X1)}' placeable could
have a sRR variable set to 'nw_aarcl011', causing it to
become banded mail when the placeable is used.

• gp_rotate_us – This will rotate the placeable by an
amount determined by local variables on the object.
Thus this script could be used to create a rotatable
statue that turns by a fixed angle and makes a
scraping noise each time it is moved. Multiple
rotatable statues could be used as parts of a puzzle,
for example. The required variables are listed in the
notes for this script.

• gp_talk_object – This script will cause a placeable to
hold a conversation with the player using the entry in
the placeable's Conversation slot. The conversation

can then include actions such as a ga_lock script that
will change the lock status of a door.

• gp_treasure_op_de – This script will generate random
treasure based upon local variable settings on the
container. The valid values for these variables are
listed in the 'x2_inc_treasure' include file. The
“TreasureClass” integer variable determines whether
the treasure is of low, medium or high value. The
“TreasureType” variable is a set of bit flags that
determine the treasure types.

75

Triggers

Triggers
A trigger is an object that is assigned to a polygonal region

on an area map. When a PC enters the trigger region, the
trigger object will activate and run a script or launch an
event. Triggers can be used to activate a map note, start a
conversation, unleash a trap, save the game, cause an area
transition, apply effects, and so forth. The particular
function that a trigger serves will depend on the blueprint's
properties. Many of the built-in triggers execute a script
from the toolset library.

A trigger object is created by selecting the blueprint in the
Selection panel. When the cursor is moved over an area in
the Edit panel, it will change to a crosshair. At this point
you can select consecutive corners of the trigger region by
left-clicking in the area. The region boundaries will appear
as a sequence of yellow lines, forming a polygon. At least
three points must be chosen to make a valid trigger region.

Typically the trigger should be placed and sized so that the
party can not bypass it by skirting around the edges. Thus a
map note trigger should cover all of the possible approaches
to the identified location. (Alternatively, multiple copies of
the trigger can be placed, each of which will activate the
map note from a different region.) Once a trigger region has
been defined in an area, press Esc to complete the edit.

With an area open in the Edit panel, you can select a
trigger region as an object and configure it's properties
appropriately. Within the game, if a script is entered into the
'On Enter Script' parameter, then when a member of the
party enters the active trigger region, the trigger will
execute that script. Not every trigger is activated by entry
into the region; for example, the 'World Map Transition'
trigger will activate upon clicking the floating map.

Properties

When a trigger is selected in the Selection panel or a
placeable region in an area, it's properties will be displayed
as a list of parameter names and values in the Properties
panel under the Properties tab. The properties of a trigger
are subdivided into Appearance, Basics, Basiscssarm, Lock,
Scripts, Transition and Trap blocks. When a trigger region

is selected in an area, an additional Misc block will be
inserted that will include location information. Each block
can be contracted or expanded using the small plus/minus
box at the left of the header.

Appearance
• Load Screen – Not used.
• Mouse Cursor – This doesn't work. There is no cursor

shape change when the cursor is over the trigger.

Basics

After a trigger is placed in an area, several of these fields
are moved to the Misc block.

• Classification – This determines where the trigger
will appear in the blueprint tree. It is useful for
categorizing triggers that are unique to your module.
Use the pipe character '|' to add sub-nodes.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing.

• Faction – This is set to 1.
• Localized Description – This is not used.
• Localized Name – This is the name that will appear in

the Name columns for Area Contents and Blueprints.
• Resource Name – Is a unique, 32-character name that

serves as a blueprint identifier.
• Tag – The string used to reference a trigger from a

script or conversation.

Lock
• Auto-remove key? – Not used.

Scripts

These are the event handler scripts. Many of these events
can only be triggered by a PC, and only while the PC is the
controlling character.

• On Click Script – This script should be activated
when the player left-clicks in the trigger region, but I
haven't been able to make it function in most
instances. The exceptions are area transition triggers
such as 'World Map Transition', but these will always
paint a floating map image.44 The clicking object is

44 An alternative is to use a placeable. You could, for

76

Triggers

returned by GetClickingObject().
• On Disarm Script – this event script is run if a trap is

successfully disabled.
• On Enter Script – This script is fired when the trigger

region is entered. The GetEnteringObject() call will
return the object that triggered this script.

• On Exit Script – This runs when the creature leaves
the encounter trigger region. GetExitingObject() will
return the object that exited the region.

• On Heartbeat Script – This runs every six seconds.
he GetFirstInPersistentObject() call can be used to
find the first creature in the trigger region, followed
by repeated calls to GetNextInPersistentObject() to
locate the other targets. These should be used
sparingly, however, as detailed heartbeat scripts can
impact game performance.

• On Trap Triggered Script – If the 'Trigger Type' is set
to Trap, then this script is run when the trap is
triggered.

• On User Defined Event Script – user-defined events
will cause this script to run.

• Variables – This is used to define and initialize local
variables for the trigger.

Transition
• Link Object Type – By default this is set to 'No

transition' It can be changed to transition to a door or
a waypoint. This will cause the creature entering the
trigger region to transit to the corresponding object
identified by the 'Linked to' field.

• Linked to – This can be set to the tag of a door or
waypoint that the PC will transition to depending on
the setting of the 'Link Object Type' field above.

• Party Transition? – If true then the entire party will be
transited, rather than just the entering creature.

Trap

 See the Doors blueprint section for a description of the
fields.

example, set a Walkmesh Helper's 'Static' parameter to
false, set 'Usable?' to true and add a script to 'On Left Click'.

Blueprints

Here is a summary of some of the available trigger
blueprints.

• Autosave Trigger – When a creature enters this
trigger region, it runs the gtr_autosave script, which
will perform an autosave for a single-player game.

• Block Trigger – This runs the gtr_block_trigger script
on entry. If the waypoint defined by the trigger's
Waypoint variable is a valid waypoint in the area, the
screen will fade to black, the party will jump to the
waypoint, and the view will fade back from black.
Optionally, a single line conversation belonging to
the trigger can then be played.

• Enable Map Note – Upon entering the trigger region,
this will run the gtr_enable_map_note script. This
enables a map note, which should be a Disabled Map
Note waypoint. The variable MAP_NOTE_TAG
should be set to the tag of the waypoint.

• Henchman Trigger – The blueprint comments say that
this only works with the XP1 henchman event
system. I haven't delved into this component yet.
More information is needed.

• Murder Trigger – This triggers the gtr_murder_en
script on entry. The sCreatureToMurder variable is
set to the tag of a creature, and the script applies a
death effect to that creature.

• New Area Transition – This will create a world map
transition symbol. This could be used to run a script
to execute the ShowWorldMap call, displaying the
world map.

• New Generic – By default this does nothing.
• PC-Only Area Transition – This will create a world

map transition symbol. When a PC clicks the symbol,
it will run gtr_pc_tran_clic. The destination is set by
the parameters in the Transition block of the trigger
properties.

• SpeakTrigger – Upon entering the trigger, the script
gtr_speak_node will be executed. This will initiate a
conversation with the NPC that has the tag matching
the NPC_Tag variable. The conversation can consists

77

Triggers

of a single string which will float above the NPC, or
it can be a full cut-scene conversation.

• Tracks Trigger – Upon entry, this trigger will run the
script x1_tracks_trig, causing the trigger to speak a
one-line conversation using the resource reference
string that matches the trigger's tag string.

• Walkmesh Cutter – This trigger region becomes
unwalkable when the area is baked. It can be used in
combination with the Walkmesh Helper placeables,
or for blocking off a region occupied by many
environmental objects, such as trees and shrubs. Note
that it is better to keep the region of the walkmesh
cutter relatively simple, as a complex unwalkable
area may result in a PC entering a location and being
unable to escape. Blocking off an region filled with
many objects using a rough outline is preferable to
delimiting each object with an elaborate walkmesh
cutter region.45

• World Map Transition – This will create a world map
transition symbol. When a PC clicks the symbol, it
will run 'gtr_world_map_cl'. If the party is gathered
together, it will call the DoShowWorldMap function
in the ginc_world_map include file. The parameters
that are passed to this call are the values of the sMap
and sOrigin variables.

• X0_SAFEREST – This trigger is used to identify
rooms where the party can safely rest. For details, see
the Allow Limited Rest section.

45 In many cases it may be helpful to bake a group of adjacent
objects so as to show their path blocking outline when the
Baked flag is set, then convert the group to environmental
objects and apply a Walkmesh Cutter along their outline.

Encounters
These blueprints provide a trigger that can bring into play

a predefined group of creatures. An encounter consists of a
trigger region in an area, along with one or more spawn
points. When a trigger is activated by a PC or creature
entering the region, the encounter's creatures will be
inserted into the game environment at the spawn points. The
properties of an encounter are configured by the blueprint
settings. The toolset comes with a set of standard
encounters that can be used within any module.

When an area is opened for editing and an encounter
blueprint is selected, the cursor changes to a crosshair on
the Edit panel. The encounter region can now be created by
successively selecting three or more corners, in the same
manner as a trigger, then pressing the 'Esc' key when the
region is complete. Spawn points can be added to the
encounter by selecting the region as an object, selecting the
'Paint Spawn Point' option from the toolbar, then left-
clicking in the area. Press 'Esc' when you are done.

As long as an encounter region is selected, the associated
spawn points will show a red flag; otherwise the flags are
yellow. With a region selected, it's spawn points can be
selected and relocated or deleted. If neither the encounter
region nor a spawn point is currently selected, then none of
spawn points are selectable. Deleting an encounter region
will also delete the associated spawn points.

For realism, the spawn points should be placed so that the
appearance of the spawned creatures seems natural. This
can be accomplished by placing spawn points at a suitable
distance from the trigger region, or at locations adjacent to
concealed sites. The placement of the spawn points can also
be used to create interesting tactical challenges for the
players, such as a surprise attack from a flank in
combination with the main attack from the front.

Properties

When an encounter is clicked in the Selection panel or a
placeable region in an area, it's properties will be displayed
as a list of parameter names and values in the Properties

78

Encounters

panel under the Properties tab. The properties are
subdivided into Basics, Behavior and Scripts blocks. When
an encounter trigger region is in an area, a Misc block will
be inserted that will include the location information. Each
block can be contracted or expanded using the small
plus/minus box at the left of the header.

Basics

After an encounter is placed in an area, several of these
fields are moved to the Misc block.

• Classification – This field determines where the
encounter will appear in the blueprint tree. It is useful
for categorizing encounters that are unique to your
module. The standard encounters are classified
according to difficulty, and range from Easy to Very
Hard. Use the pipe character '|' to add sub-nodes.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing.

• Faction ID – If the creature entering the encounter
trigger region is hostile toward this faction ID then
the encounter will trigger. Thus a creature belonging
to the Hostile faction will not trigger an encounter
that has a Faction ID of Hostile.

• Localized Description – As an encounter is not a
viewable object, this has no effect.

• Localized Name – The name that appears in the
Blueprints and Area Contents lists. This is used as a
summary of the encounter type.

• Resource Name – Is a unique, 32-character name that
serves as a blueprint identifier. It is used in the
CreateObject function call.

• Tag – The string used to reference the encounter from
a script or conversation.

• Template ResRef – The resource name of the
blueprint template that this object inherits from.

Behavior
• Active – If this is true then the encounter can be

triggered. If false, then the encounter must be set to
active using a SetEncounterActive call from a script.

• Auto-reset Count – If 'Auto-reset?' is true, this sets

the maximum number of times that the encounter can
be reset.

• Auto-reset Delay – If 'Auto-reset?' is true, the
encounter will reset after this number of seconds.

• Auto-reset – If this is set to true, then the encounter
will reset itself to active after being triggered.

• Creature Spawn Style – This menu determines how
the creatures will be distributed among the possible
spawn points. The default is to place the monsters at a
randomly chosen spawn point.

• Creatures – Selecting the ellipsis on this entry will
bring up a edit dialog that can be used to choose the
mixture of creatures in the encounter. Each row
consists of a creature blueprint, a minimum and
maximum number of creatures, and whether it is a
single spawn.

• Difficulty – This menu is used to set the difficulty
level of the encounter. The possible choices are Very
Easy (1/2), Easy (1), Normal (2-4), Hard (5-9) and
Very Hard (10-20).

• Maximum Number of Creatures – This is the upper
limit on the creatures that the encounter will spawn.

• Minimum Number of Creatures – The lower limit on
spawned creatures.

• Player Only – If true, then the encounter can only be
triggered by a PC.

• Spawn once? – If false then the encounter will spawn
additional creatures as previously spawned creatures
are killed.

Scripts

These are the available event handler scripts that are
specific to encounters. Many of these events can only be
triggered by a PC, and only while the PC is the controlling
character.

• On Entered Script – This script is fired when the
encounter trigger region is entered. It is run even if
the encounter is inactive.

• On Exhausted Script – This script should be run when
all the creatures spawned by an encounter are killed.
I've run encounters where this didn't fire at the end.

79

Encounters

• On Exit Script – This runs when the creature leaves
the encounter trigger region. It is run even if the
encounter is inactive.

• On Heartbeat Script – This is run once every six
seconds.

• On User Defined Event Script – This script is run
upon the triggering of a user-defined event.

• Variables – This is used to define and initialize local
variables for the encounter.

Sounds
The blueprints in the Sound category contain a number of

auditory effects that can be used to produce localized
sounds in an area. The sounds are generated from '.wav'
files in the game's install folder, although custom sounds
can also be used from your local 'override' folder. When
placed within an area, a sound object is shaped like a blue
speaker with a hexagonal cone.

When the 'Placed' option in the toolbar's 'Sound' menu is
active, the output from placed sound objects can be heard
within the toolset. For a sound object to be audible, the
frustrum within the Edit panel must be positioned within the
Maximum Distance radius of the sound. The maximum
radius of a placed sound is shown by a sphere of tiny purple
dots.

The toolset sound blueprints are organized into the
following categories:

• Background – This is a mixture of generic sounds
found in various settings, such as tools being use,
building noises, distant weather and the movement of
vegetation.

• Chatter – This is for conversations and noises
produced by men, women and children in various
circumstances, ranging from taverns to contests. It
includes the Walla sub-category, which is the general
noise produced by groups of people.

• City & Town – The subcategories consist of bells,
docks, rope use, smithy and wood sounds. The last is
useful for creaking old wooden buildings.

• Creatures – These sounds reproduce the noises
emitted by specific creatures, such as dragon, ghost or
orc.

• Dungeon – The natural sounds heard in caves and
mines.

• Environmental – These are elemental-type sounds
divided into fire, lava, steam, water and wind. The
last two are the most useful for outdoor weather
scenes. Fire is useful for various sources of flame,
such as torches or fireplaces.

80

Sounds

• Magic – A selection of odd sounds that can be used in
a magical-theme environment, such as a witch's cave.

• Special – A catch-all category for sounds that don't
fall into the above classes. They consist of falling
body sounds, theme sounds for entrances, and a
couple of musical instrument sounds.

Properly used, sounds can bring an area to life. Localized
sounds can bring an environment to life by highlighting
points of interest as the player explores an area. There are a
number of sounds available, and many can be matched up
with the nearby environment. Complete silence can seem
unnatural and so should be rare. Even an empty building at
night can creak and groan from time to time. The volume of
localized sounds should be set to a level where they can be
readily heard by a nearby player.

 The available blueprint sounds differ from the list of
sounds that can be set for the ambient sounds in an area.
Typically the ambient sounds would be set for global audio
effects set at a lower volume. The blueprint sounds are
localized audio effects that are related to specific
environmental features. Thus, "Tavern, Rowdy" could be
used for general tavern background noise, while "Tavern
Barmaid" would be used where the barmaid is serving
drinks.

Properties

When a sound is selected in the Selection panel or a
placeable region in an area, it's properties will be displayed
as a list of parameter names and values in the Properties
panel under the Properties tab. The Sound properties are
subdivided into Basics, Behavior, Position and Scripts
blocks. When a sound object is placed in an area, a Misc
block will be inserted that will include the location
information. Each block can be contracted or expanded
using the small plus/minus box at the left of the header.

Basics

After a sound is placed in an area, several of these fields
are moved to the Misc block.

• Classification – This determines where the sound will
appear in the blueprint tree. Use the pipe character '|'

to add sub-nodes.
• Comment – This is a utility field for entering notes

that will not be seen in the game, but which can be
used during editing.

• Localized Description – As a placed sound is not a
viewable object, this has no effect.

• Localized Name – The name that appears in the
Blueprints and Area Contents lists. It is typically used
as a summary of the sound type.

• Resource Name – Is a unique, 32-character name that
serves as a blueprint identifier.

• Tag – The string used to reference the sound from a
script or conversation. It is used in the SoundObject*
function calls.

• Template ResRef – The resource name of the
blueprint template that this object inherits from.

Behavior

• Active? – If this is false, then the sound must be
activated through a script. An inactive sound can be
activated with a SoundObjectPlay() call, then turned
off by SoundObjectStop(). If this field is true, then
the sound will continue to play even if a script calls
SoundObjectStop().

• Continuous? – When this is set to true and the
'Looping' property is false, the sound will repeat after
each time period set by the 'Interval' field, after
accounting to the 'Interval Variation'.

• Hours at which the sound is active – If the 'Times at
which to play the sounds' property is set to 'Use
Hours', this boolean array determines what hours of
the day the sound will be active.

• Interval – If 'Continuous?' is set to true, then this
value is the average time interval in milliseconds
before the sound is repeated.

• Interval Variation – If this is not zero, the 'Interval'
above will be randomly modified to a value that lies
between (Interval ‒ Variation) and (Interval +
Variation).

• Looping – If this is true, the sound endlessly repeats.
A slight pause may be heard between each loop.

81

Sounds

Some of the sounds are set to looping, but may be
better used with the 'Continuous?' property set to true.

• Pitch Variation – This is a decimal value between 0
and 1. Each time the sound repeats, the pitch is
randomly modified by this proportion. Thus, if the
pitch variation is 0.3, the pitch varies from 70% to
130% of the base pitch. Variation in pitch helps to
keep the sounds from feeling repetitive.

• Priority – When multiple sounds occur at the same
time, the game engine assigns each a priority based
on this setting. The ranking of the priorities is listed
in the 'prioritygroups.2da' file.

• Random? – If this is set to true and there are multiple
sound files in the 'Sounds' field, the sound file will be
randomly selected during each loop.

• Sounds – This field contains one or more '.wav' file
prefixes. Clicking on the ellipsis will launch a dialog
where you can add sound entries, select a value and
set the Sound field to the file prefix. Valid sound files
will be played in the order listed unless 'Random?' is
set to true.

• Times at which to play the sounds – This controls the
hours of the day when the sound can be played. The
available choices are Always, Day, Night and Use
Hours. When the game clock is in a time interval
when a sound will not play, then no sound will be
produced even with a SoundObjectPlay() call.

• Volume – This slider sets a relative sound volume
between 0 and 127, where zero is off and 127 is the
maximum volume.46

• Volume Variation – If this is not zero, the volume
will randomly increase or decrease by up to this
amount each time the sound plays.

• Elevation – The sound will radiate from the height of
the object plus this offset.

• Maximum Distance – If 'Positional?' is true, this is the
maximum range that the sound will be audible. The
volume will increase with decreasing distance up to
the Minimum Distance from the sound object. This

46 The range [0, 127] is used because this is the range allowed by
an 8-bit signed character.

radius is graphically displayed in the toolset by a
sphere of violet dots.

• Minimum Distance – Within this radius the sound
plays at its maximum volume. If you want the sound
to be clearly audible within a certain radius, you
should increase this value to a significant fraction of
the Maximum Distance.

• Positional – If this is true, then the sound volume
varies based on the distance parameters above. If it is
false then the sound behaves like an ambient noise
that is heard at the same volume throughout the area.
The latter is useful when you want to use multiple
overlapping ambient sounds within an area.

• Random Position? – If this is true, then the position
of the sound varies randomly each time it plays. This
could be used, for example, with some environmental
background sounds that can change position, such as
Twig Snaps or Brick Scrapes.

• Random Range (x) – This is the random offset along
the x-axis that is applied to the position if 'Random
Position?' is true.

• Random Range (y) – Similar to the above, except it is
applied along the y-axis.

Scripts
• Variables – This is used to define and initialize local

variables for the sound. It can be used, for example,
to track when a sound is playing because of a script.

You can make your own sound objects by copying a '.wav'
file in 'override' in your NWN2 documents folder, then
creating a new sound blueprint and setting the Sounds field
to include the file prefix. Thus a file called 'crunch.wav' will
have 'crunch' entered in the Sounds field. You will still need
to set the various other fields, such as Volume, Priority and
Active?.

82

Waypoints

Waypoints
A waypoint marker provides a location within an area that

can be used as a party destination, a point of interest for a
map, one of a sequence of positions to march a creature, a
place to spawn creatures, or a location to dynamically place
an object or effect. Waypoints are not visible within the
game, but they can be referenced by scripts.

Properties

When a waypoint is selected in the Selection panel or in an
area, it's properties will be displayed as a list of parameter
names and values in the Properties panel under the
Properties tab. The properties are subdivided into
Appearance, Basics, Behavior and Scripts blocks. When a
waypoint trigger region is in an area, a Misc block will be
inserted that will include the location information. Each
block can be contracted or expanded using the small
plus/minus box at the left of the header.

Appearance
• Color – This sets the color of the flag on the waypoint

marker. In addition, when a waypoint has a map note,
this will be used as the color of the icon on the map.

Basics

After a waypoint is placed in an area, several of these
fields are moved to the Misc block.

• Classification – This determines where the waypoint
will appear in the blueprint tree. It is useful for
categorizing waypoints that are unique to your
module. Use the pipe character '|' to add sub-nodes.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing.

• Localized Description – The waypoint can not be
seen by the player, so this is unused.

• Localized Name – The waypoint can not be seen by
the player, so this is only used in the blueprints list.

• Resource Name – Is a unique, 32-character name that
serves as a blueprint identifier.

• Tag – The string used to reference the waypoint from

a script or conversation.
• Template ResRef – The resource name of the

blueprint template that this object inherits from.

Behavior

These fields are used to configure a note to appear on the
player's map.

• Has Map Note? – If this is set to true, then a map note
can appear on the player's map at this location.

• Map Note Enabled? – When a map note is enabled, it
will appear on the player's map. If it is disabled, a
trigger script can be used to enable the note.

• Map Note Text – This is the string that will appear on
the player's map when a map note is enabled.

Scripts

• Variables – This is used to define and initialize local
variables for the waypoint.

Types

The following list briefly describes some of the waypoints
that are available in the toolset.

• Block Waypoint – Intended for use with the Block
Trigger.

• Disabled Map Note – This is configured as a place to
show a note on the player's map. The note is disabled
but can be enabled by a 'Enable Map Note' trigger.

• Map Note – This is configured to show a note on the
player's map. The text in the 'Map Note Text' field
will be displayed during a mouse-over on the map.

• Observation Point – Marks a point of interest.
• Point of Interest – Marks a point of interest.
• Rest-Encounter Spawn Point – This was used in the

Hordes of the Undermountain game as a creature
spawn point for the rest system, as defined in the
'x2_inc_restsys' include file.

• Shopping Point – Marks a Store location.
• Waypoint – Generic, general purpose waypoint.

Ambient Animations

The default 'On Spawn In Script' value for most creature

83

Waypoints

blueprints is nw_c2_default9. This script will check the
creature for several local integer variables with names that
are defined in the x2_inc_switches include file. Setting
these to 1 will activate specific spawn-in conditions. In
particular, setting 'X2_L_SPAWN_USE_AMBIENT' equal
to 1 will cause the creature to execute ambient animations,
while 'X2_L_SPAWN_USE_AMBIENT_IMMOBILE' will
cause it to run non-mobile ambient animations.

The ambient animations are executed by the standard
'nw_c2_default1' heartbeat script when it calls the
PlayMobileAmbientAnimations function. This routine is
found in the 'nw_i0_generic' include file.

Several waypoints are available in the toolset for use with
the ambient animation scripts.47

Ambient Animation Waypoint Tag
Detect Mode Toggle NW_DETECT
Generic Stop Waypoint NW_STOP
Home Waypoint NW_HOME
Safe Waypoint NW_SAFE
Shop Waypoint NW_SHOP
Stealth Mode Toggle Waypoint NW_STEALTH
Tavern Waypoint NW_TAVERN

Typically a creature's mobile animation will cause it to
move to a random object or waypoint that has the tag
NW_STOP. If a creature is spawned in an area containing
the NW_HOME tag, the creature records that area as it's
home and returns there at night. If the creature is spawned
with the inanimate animations flag, it will stay close to the
nearest NW_HOME waypoint, but will interact with its
environment. Creatures that are spawned outdoors go
through doors that lead to areas with the NW_TAVERN or
NW_SHOP tags, then come back out later.

If a creature is moving ambiently and the nearest waypoint
has the NW_DETECT tag, then it will trigger detect mode.
If the nearest waypoint has the NW_STEALTH tag, then
the creature will trigger stealth mode. When a creature
suffers damage, it will move to the nearest waypoint with
the tag NW_SAFE, then rest to recover its health.

47 See the PlayMobileAmbientAnimations_NonAvian function
comments in the "x0_i0_anims" include file.

Map Notes

A map note appears on the player's map as a diamond
shape, and moving the cursor over the note will display the
map note message with a pop-up. Each map note is created
using a waypoint object. In the Behavior section of the
waypoint's properties, set the 'Has Map Note?' flag to True,
then modify the 'Map Note Text' field to the note you want
to appear on the map. If you initially want to hide the note,
set the 'Map Note Enabled?' flag to false. In this case, a
trigger can be used to activate the map note.

If there is not an already existing waypoint (such as a
transition point), a copy of the 'Map Note' waypoint
blueprint will serve. There is a corresponding 'Enable Map
Note' trigger blueprint that can be used as a map note
enabler. In the Scripts section of this trigger is a variable
called MAP_NOTE_TAG. This should be set to the tag of
the map note waypoint that you want to enable.

Post

The 'Post' waypoint can be used for a guard post. After
creating an NPC guard creature, place a Post waypoint at
the location where it's watch will be held. The tag of this
waypoint should be set to the string “POST_” plus the tag
of the guard.

The WalkWayPoints() call needs to be included in the
script placed in the 'On Spawn In Script' slot. The default
nw_c2_default9 script will make this call for you. This
function will cause the guard to return to its post after
combat.

Walk Path

The standard nw_c2_default9 script configures a spawned
creature to follow a set of waypoints. These must use a tag
of the form WP_NPC_TAG_##, where NPC_TAG is the tag
of the spawned creature and ## is one of a sequence of
integers beginning with '01'.48 Thus a creature with the tag
'my_creature' fill follow a sequence of waypoints with the
following tags:

48 If a single WP_NPC_TAG_01 waypoint is created in an area,
then the character will keep attempting to return to the
position of that waypoint. This is useful, for example, when
you want to keep a shopkeeper near a desk.

84

Waypoints

WP_my_creature_01
WP_my_creature_02
WP_my_creature_03
...
When a sequence of walk path waypoints is placed in an
area, the toolset will automatically link them together, in
numerical sequence, by a series of white arrows. To create
such a sequence, place the first waypoint and assign it a tag,
then duplicate the waypoint and increment the tag suffix on
each copy. The white arrows should automatically appear.
You can use these arrows to check that the walk path does
not intersect obstructions that may disrupt movement.

You can further enhance the behavior of a creature
following a walk path through the use of scripted
waypoints. This allows a script to be is executed each time a
creature reaches a waypoint along the walk path. The
default name of this script is WP_NPC_TAG; thus matching
the prefix used for the walk path waypoint tags.

In a scripted waypoint script, the GetCurrentWaypoint
routine from the "x0_i0_walkway" include file can be used
to determine the waypoint number in the sequence that the
creature reached. The "ginc_wp" include file also has a
number of routines that are useful for a scripted waypoint
script, such as conversation routines. See the Writing
Scripts section for more information on how to write
scripts.

Static Cameras
These blueprints can create motionless viewpoints for use

in conversation cut scenes.49 Within the toolset, a Static
Camera has the appearance of an old-fashioned film movie
camera. (This shape will not be visible within the game.)
When this camera object is selected in an area, you can hold
down both Ctrl and right click, then drag to orient the
camera in whatever direction you choose.

For better control over the camera aim, select the Preview
tab in the Properties panel. You will be shown the view
from the perspective of the camera. However, you have no
control over the view dimensions – it is fixed to the
standard size used in the cut scene.

The view from the camera (selected at upper
right) is previewed in it's properties window.

Properties

When a static camera is selected in the Selection panel or
in an area, it's properties will be displayed as a list of

49 See the 'Camera Shots' section of the chapter on
Conversations for details on how to include a static camera
view during a conversation.

85

Static Cameras

parameter names and values in the Properties panel under
the Properties tab. The properties are subdivided into Basics
and Scripts blocks. When a static camera is in an area, a
Misc block will be inserted that will include the location
information, as well as the pitch and roll of the camera.
Each block can be contracted or expanded using the small
plus/minus box at the left of the header.

Basics

After a static camera is placed in an area, several of these
fields are moved to the Misc block.

• Classification – This determines where the static
camera will appear in the blueprint tree. Use the pipe
character '|' to add sub-nodes.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing.

• Localized Description – As a static camera is not a
viewable object, this has no effect.

• Localized Name – The name that appears in the
Blueprints and Area Contents lists.

• Resource Name – Is a unique, 32-character name that
serves as a blueprint identifier.

• Tag – The string used to reference the static camera
from a script or conversation.

• Template ResRef – The resource name of the
blueprint template that this object inherits from.

Scripts
• Variables – This is used to define and initialize local

variables for the static camera.

Note that you can hold down the Alt key right click, and
apply a slight roll to the camera for a slanted view.
However, this feature doesn't seem to work quite right
because the heading changes to a fixed value. Still it is
interesting to experiment with this and the other properties
in the Misc section.

Lights
The Light blueprints can be used to place point light

sources in areas. These are useful for simulating lit street
lights, the glow from a fireplace, burning torches along
gloomy cave tunnels, the illumination emitted by a window,
forge or lava, or for producing a mysterious magical glow
coming from an enchanted site. Lights can also be
incorporated into placed effects to produce, say, a glowing
candle. Unfortunately there are no standard light types
included in the toolset, so you will need to make your own
set.

The positioning of lights can be used to highlight certain
locations. Lights should almost always be positioned so that
they appear to originate from a source, such as a placed
effect or a lamp post, and the radius and intensity of the
illumination should be in balance with the strength of the
source. Thus the light of a candle should be smaller and less
luminous than the light from a bonfire.

For example, a flickering light source can be positioned
next to a 'Fireplace' placeable. For further realism, a burning
'Fireplace' placed effect and a 'Fireplace' sound can be
positioned on the logs. The various 'Lit' prefabs can provide
dynamic light sources, or you can use the windows along
the walls of interior areas.

The color of the light can elicit certain associations and
thus should be chosen with some care. This is particularly
true of red lights, which tends to draw the eye even when
they are only a small source. Red, orange and yellow colors
can appear warm and energetic, while green, blue and violet
are cool and placid. Combining warm and cold lights can
create nice contrasts and make an area more visually
interesting. However, it is a good idea to use only two or
three colors in an area; any more and the effect can appear
haphazard.

For interior areas, point lights source heighten the surface
texture on walls and floor, causing the details to stand out.
Unfortunately, the light from a point source is not
interrupted by interior walls. If you position a light such that
the range reaches beyond a wall, then the far side will be
illuminated as well. Needless to say this can make a scene

86

Lights

appear unrealistic. To address this you can either place
lights in locations where the illumination will not cross a
two-sided wall, or reduce the range of the light so that it
illuminates a smaller area. To check for this, you can turn
on the 'Light Spheres' option under the 'Show/Hide' filter
menu in the toolbar. A third alternative is to use matching
light sources on both sides of the wall.

Note how the light source (top center) spills through the wall
surface and does not cast shadows off the barrel or trunk.

I have experienced inconsistent results with shadows
being cast by creatures or placeables. Within the toolset, the
floors of Standard Interior, Illefarn and Castle tiles show
shadows being cast, while the Estate and Sunken Ruins tiles
do not. (An exception is when a point source is placed at
ground level on an Estate tile.) The rendering of shadows in
the game will depend on the client's graphics settings, and
the game engine can also spontaneously turn off shadow
rendering. Hence, you shouldn't rely on shadows always
being available.

The intensity and color properties of a Light can be set to
vary in a cyclical manner. This, for example, can be used to
reproduce a wavering glow from a candle. The flicker
variation makes the intensity of the illumination change
over time as it cycles between bright and dim. Alternatively,
the 'lerp' (short for linear interpolation) settings allows you
to provide an alternate color and intensity, so that the light
will vary smoothly between the Color and Lerp values.
Note that only one of the lerp or flicker behaviors can
operate on a single light source. If lerp is enabled then
flicker will be disabled.

As noted in the toolset help guide, lighting can be

processor intensive. It is recommended that you have no
more than three light sources on any tile or placeable at one
time. The directional light cast by the Sun/Moon counts as a
light source for this purpose. It may also help to lower the
shadow intensity setting to a value of 0.6-0.8, thereby
reducing the computation required.

Properties

When a light is selected in the Selection panel or in an
area, it's properties will be displayed as a list of parameter
names and values in the Properties panel under the
Properties tab. The properties are subdivided into
Appearance, Basics, Behavior and Scripts blocks. When an
light is in an area, a Misc block will be inserted that will
include the location information. Each block can be
contracted or expanded using the small plus/minus box at
the left of the header.

Appearance
• Casts shadow? – If true then the light should cast

shadows. However, this may have no effect in interior
areas as shadows are not cast from walls, and might
not be cast from placeables.

• Color – This expandable field allows you to set the
color and intensity of the light emitted by the object.
The DiffuseColor setting is the color that is projected
on the surroundings. The Intensity value is the
brightness of the light within it's Range. The default
Intensity is 1; a value of 0 turns off the light and
values above 2 produce saturation. A value of 0.8
appears equivalent to the lit torch item.

• Lerp Target Color – This expandable field allows you
to set an alternate color and intensity range of the light
emitted by the object. The fields are identical to the
Color settings above. These colors are only used if
'Lerp?' is set to true.

• On? – The object will only emit light when this is set
to true. You can toggle this state in a script with the
SetLightActive function. Thus you could, for example,
turn lights on at dusk, then turn them off again at
dawn.

• Range – This is the maximum distance that the light's

87

Lights

diffuse color will reach. The light intensity will
steadily decline with distance from the center until the
point where it reaches the maximum range. You can
visually display this radius as a sphere of red dots by
selecting 'Light Spheres' from the 'Show/Hide' menu in
the toolbar.

• Shadow Intensity – This is a decimal value between 0
and 1 that is used to determine the intensity of
shadows cast by the light. Lower values, close to zero,
will make the game run more smoothly.

Basics

After a light is placed in an area, several of these fields are
moved to the Misc block.

• Classification – This determines where the light will
appear in the blueprint tree. Use the pipe character '|' to
add sub-nodes.

• Localized Description – The light can not be selected
by the player, so this is not used.

• Localized Name – This is used as an identifier in the
blueprints list.

• Resource Name – Is a unique, 32-character name that
serves as a blueprint identifier.

• Tag – The string used to reference the light from a
script or conversation.50

• Template ResRef – The resource name of the blueprint
template that this object inherits from.

Behavior

This block controls the variation of the light source over
time. You can use flicker or lerp, but not both.

• Flicker Rate – Flicker occurs in cycles, with the
repetitions per seconds determined by this decimal
value. Thus a value of 2 will cause the flicker to occur
twice per second, while a value of 0.5 causes a flicker
every half second.

• Flicker Type – This option determines how the light
energy will vary during a cycle. Bounce spends more
time near peak intensity, Jumpy results in sharp light

50 There is a known problem where the 'Tag' strings for Light
placeables are not restored from game saves. For details, see
the notes for the 'SetLightActive' call in the second volume.

changes and Linear gives a smoothly varying pattern.
• Flicker Variance – The flickering can add this amount

to the intensity at peak variance. A value of 0 results
in no flickering.

• Lerp Period – This is the time in seconds for the light
to cycle between the Color and Lerp Target Color.

• Lerp? – The light colors will vary in a cyclical manner
by changing smoothly between the Color and Lerp
Target Color. The transition is made using a blend of
the two colors.

Scripts
• Variables – This is used to define and initialize local

variables for the light.

Sample Light Sources

The following values for Range correspond to the radius
of the light sources listed in the version 3.5 System
Reference Document:

Light Source Range

Candle 2

Lamp 10

Torch 12

The table below can be used to set the diffuse color of a
light source so that it will approximate the appearance of a
natural or artificial light source. Selecting the DiffuseColor
field of the light placeable will bring up a color edit form. A
suitable hexadecimal value can be entered into the HEX
field of that interface.

Light Source Hex Code

Candle FF9329
40 Watt bulb FFC58F
100 Watt bulb FFD6AA
Sunshine FFFFFB
Cloudy day C9E2FF

88

Lights

Windows and Curtains

Some interior tile variations include one or more window
bays along a side. You can use the light blueprints to create
a daylight glow coming from these windows.

Example

In a standard interior room with a window looking out
over an area with heavy, wind-swept clouds, a Light
blueprint is created that includes the following properties:

• Color – 125, 167, 217
• Intensity – 0.6
• Range – 5
• Shadow Intensity – 0.8
• Flicker Rate – 0.1
• Flicker Type – Bounce
• Flicker Variance – 4
• Flicker? – True
• Position No Snap – ... , 2.5

The light placeable should be located so that it is aligned
with the middle of the window and touching the surface.
This positioning eliminates most of the reflection from the
wall's window texture and creates a reflected glow along the
bottom of the window frames.

For curtains, a fainter light is positioned near the placeable
so that it illuminates most of the surface, causing the curtain
to glow faintly. For properties, in the same environment as
the above example, the following are included:

• Color – 167, 167, 167
• Intensity – 0.4
• Range – 2
• Shadow Intensity – 0
• Flicker Rate – 0.1
• Flicker Type – Bounce
• Flicker Variance – 1
• Flicker? – True

Of course, you will want to create light sources that are
specific to your own setting and environment. In an area of
cloudless sky, for example, you will likely not want to use
the flicker properties at all.

Trees
The Tree blueprints can be used to create foliage in both

exterior and interior areas. There is a large variety of
different tree and bush species provided, with many
duplicating a known type of flora. (Blueprint names with a
capital 'C' at the end form a cluster of trees.) The shape and
height of a tree object is randomly generated using the value
of the Random Seed field. However, there is no way to
know ahead of time what form a tree will take when a
random value is entered; you will just have to experiment
until you get a shape you like. Another limitation of this
object type is that it can not be rotated.

Within the game, trees and shrubs can not be selected by
the player and they behave as an environmental object that
creatures can walk through. To turn trees into obstacles, you
can use the walkmesh cutter from the Triggers blueprints.
Alternatively, on outdoor maps, you can make the tree's grid
mesh non-walkable.

Some of the plugins provided by the gaming community
(such as PowerBar) can be used to give the trees in an area a
random seed. This will save you the work of having to enter
a different random seed for each tree and shrub. Plugins can
also be used to automatically generate a walkmesh cutter
around the base of a single tree.

By default, a tree is configured to fade from sight as a
player character draws near, turning the object into a
ghostly image. This has the benefit of preventing the tree
from obstructing the sight of the player. However, it can
appear somewhat unrealistic because the location of the
core trunk is also obscured. A work-around is to place one
of the 'Tree Trunk' placeables from the NATURE PROPS at
the location of the tree's base.51 An alternative is to use the
'Tree, Stump (03)' placeable.

To enhance the look of a placed tree, try modifying the
texture underneath to simulate the impact the tree has on the

51 For best results, you will need to change the scale of the
placeable so that it will fit inside the tree, then lower it a notch
or two and convert the trunk into an Environmental Object.
For example, with a Maple tree, I scaled down a 'Tree Trunk
{S- GreenAsh (X1)}' placeable to 55% of normal.

89

Trees

environment. Hence, for a large tree in a grassy region,
some dirt-textured underneath can reproduce the effect of
regular shade from the leaves. Other possibilities include
creating a small mound in the terrain underneath an tree, or
placing some grass and/or rocks about the base about a
solitary tree. For a distant tree skyline, the Rural Trees cards
in the NATURE PROPS section of the Placeables can be
added as a background, although you may still want to place
a few scattered trees in the foreground to add depth.

Properties

When a tree is selected in the Selection panel or in an area,
it's properties will be displayed as a list of parameter names
and values in the Properties panel under the Properties tab.
The properties are subdivided into Appearance and Basics
blocks. When an encounter trigger region is in an area, a
Misc block will be inserted that will include the location
information. Each block can be contracted or expanded
using the small plus/minus box at the left of the header.

Appearance
• Appearance – This is a menu of tree appearances.

Some of the trees and bushes are created in stands.
• Casts shadow? – Define the types of shadows cast by

the tree.
• Fade – If this is set to true, the image of the tree will

fade when it would otherwise obstruct the line of sight
to the PC. Setting this to false will prevent fading.

• Random Seed – This number is used to generate the
tree. Changing the value will cause a new tree form to
be generated. Thus you could place a row of trees then
modify the seed for each object, resulting in a unique
appearance for every tree. (It is usually sufficient to
modify one of the digits or add an extra digit at the
end until you get a look you like.)

• Receives Shadows – This determines the light sources
from which the tree receives shadows. Note that
rendering tree shadows is processor intensive, so you
may need to turn them off if you have an area with a
lot of trees. Trees outside the walkable mesh can
usually have their shadows turned off.

• Scale – This can be used to scale a tree's dimensions.
This can be useful, for example, when creating potted
plants by scaling down palm trees.

Basics

After a tree is placed in an area, several of these fields are
moved to the Misc block.

• Classification – This determines where the tree will
appear in the blueprint tree.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing.

• Localized Description – A tree can not be selected by
the player, so this is unused.

• Localized Name – The tree can not be selected by the
player, so this is only used in the blueprints list.

• Resource Name – Is a unique, 32-character name that
serves as a blueprint identifier.

• Tag – This is not used because a tree is a static object
in the game and can not be moved or modified by a
script.

• Template ResRef – The resource name of the blueprint
template that this object inherits from.

Seasonal trees

From left to right, the fall, summer and winter variants
of the Columnar Oak tree using the same Random Seed.

The tree branches are identical in all three copies.

Some of the trees have corresponding blueprints in more
than one season, although none of the trees are present in all

90

Trees

four seasons. In many cases, these tree variants will produce
the same general tree structure when the same Random
Seed is used, although they may differ in scale. Hence, this
feature could allow copies of a wooded area to be modified
to represent different seasons.

Here are the trees that have variants in more than one
seasonal category:

• Spring and summer trees – Big Thorn, Bottle Tree,
Crepe Myrtle, Japanese Maple and Pistachio Tree.

• Spring, summer and winter trees – Cherry Tree, Live
Oak.

• Spring and fall trees -- American Elm, Aspen, Aspen
Cluster and Elm.

• Summer and fall trees – Angelica, Bigleaf, Black
Gum, Bradford Pear, Columnar Oak cluster, English
Oak, Ficus, Horse Chestnut, Kousa Dogwood, Linden,
Red Oak, River Birch, Sourwood, Sycamoor, White
Birch and Willow.

• Summer and winter trees – Baobao, Bluegum,
Buckeye, Honey Locust, Maple, Pin Oak.

• Summer, fall and winter trees – Columnar Oak, Green
Ash, Grey Birch, London Plane and Sugar Maple.

• Evergreen and snow – Douglas Fir, Douglas Fir
cluster, East Red Cedar, Fraser Fir, Fraser Fir cluster,
Longleaf Pine, Longleaf Pine cluster, Monterey
Cyprus, West Red Cedar, White Pine, White Pine
cluster.

To simulate all four seasons, the trees from the summer,
fall and winter list could be used, with the summer trees
also being used for the spring season. Likewise, trees from
the evergreen and snow list can be useful for sub-arctic or
mountainous regions. The Unique category has a few burnt
editions of trees, so the following could be used to simulate
the before and after appearance of a forest fire:

• Green Ash – summer, fall, winter and unique.
• West Red Cedar – evergreen and unique.
• White Pine – evergreen and unique.

Placed Effects
Placed effects are objects that can be added to an area to

produce a persistent, dynamic visual effect, such as a
burning flame or falling leaves. The game comes with a set
of stock placed effects that will function properly within the
toolset as well as in the game. Within the editor, a placed
effect will appear with a yellow helper cube that allows it to
be selected and located. This cube can be selected just like
any other placeable. When a placed effect is copied to an
area, the effect will immediately begin to animate within the
toolset. If you find this distracting, the effect displays can
be turned off by disabling 'Placed Effects' in the Show/Hide
menu of the toolbar.

Placed effects that are created using the 'Create Blueprint'
menu item in the Selection panel may not always work
properly. Instead, the desired result may be achieved by
making a copy of an existing placed effect blueprint and
modifying the properties to use the new special effect.
However, the results are not consistent; failing, for example,
with fx_snow_fog. See the Effects Files section of the
second volume for more information.

Creating a realistic light source can involve joining
multiple blueprints into a single point. For example, the 'Lit
Standing Torch' from the Prefabs provides a gas flame. The
illumination from this light source must be supplied with a
'Lights' object, which can be placed at the height of the
flame. This light may then need to be modified to reduce
the shadow on the ground and given some flicker variation.
Finally, placing a sound object taken from the
"Environmental, Fire" group called 'Torch Fire Small' at the
height of the flame will produce a burning sound near the
torch.

A small Placed Effect may prove difficult to place
properly because the effect is contained within its yellow
helper cube. A particular example of this is the Candle
placed effect. Suppose you want to align the flame of the
Candle placed effect with the wick of the Candle placeable.
With the Candle placed effect moved into the approximate
position you want, select the effect to display its properties
and then disable the 'Placed Effect Helpers' option under the

91

Placed Effects

Show/Hide filter in the Toolbar. This will hide the helper
cube surrounding the Candle's flame effect, making the
flame position clearly visible. Now you can modify the
values in the 'Position No Snap' Property to fine tune the
location. Once you are satisfied with the placement, you can
restore the 'Placed Effects Helpers' option then Group the
effect with the placeable to keep them together.

A Candle placed effect with the 'Placed Effects
Helpers' filter enabled (left) and disabled (right)

To create a new Placed Effect blueprint, select the
Blueprints tab in the Selection panel, then open up the
'Empty' node. Next, pick an existing placed effect, such as
'Altar Glow', then right click and choose Copy Blueprint.
This places a copy of the blueprint in bold font at the
bottom of the node tree.

Properties

When a placed effect is selected in the Selection panel or
in an area, it's properties will be displayed as a list of
parameter names and values in the Properties panel under
the Properties tab. The properties are subdivided into Basics
and Behavior blocks. When an encounter trigger region is in
an area, a Misc block will be inserted that will include the
location information. Each block can be contracted or
expanded using the small plus/minus box at the left of the
header.

Basics

After a placed effect is added to an area, several of these

fields are moved to the Misc block.

• Classification – This determines where the placed
effect will appear in the blueprint tree.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing.

• Localized Description – Since placed effects can not
be selected by the player, this field is not used.

• Localized Name – The descriptive name as it appears
in the Blueprints list.

• Resource Name – Is a unique, 32-character name that
serves as a blueprint identifier.

• Tag – The string used to reference a placed effect
object by a script.

• Template ResRef – The resource name of the blueprint
template that this object inherits from.

Behavior
• Special Effect – This field presents a pop-up menu

with a long list of effect names. These are described in
the Effects Files section of the second volume. For
best results, select a continuous effect that is not
intended for application to an object.

Portals

The following effects can be used to creating a vertical
magic portal with a placed effect:

• fx_b_fiery_song_portal – 2-3' wide oval
• fx_betrayers_gate – 2-3' wide opening
• fx_demon_portal – 10' diameter circle
• fx_kos_portal_* – 6/3/1' diameter circle
• fx_portal_gen_small – 5' diameter circle
• fx_portal_gen1 – 10' diameter circle
• fx_shadow_portal* – 3' wide oval
• fx_song_portal* – 3' wide oval

Most of these have a fixed orientation on the horizontal
plane, so you will want to experiment with them before
deciding where to place the effect.

92

Placed Effects

Example

In the example below I improvised a large vat of burning
oil, as shown in the illustration. I didn't make it smaller
because the Effect requires a certain size; it doesn't scale.
This construct could be further enhanced by adding a black-
colored water layer (with a high smoothness level) between
the tile block and the placed effect, giving the oil a
glistening look. A similar process can be used to create a
natural burning oil pit.

A vat of burning oil

1. A Placed Effect is created using the fx_ashfire_2
effect.

2. A Sandbox object from the Manmade Props list is
scaled by [7, 7, 2] in the Properties list.

3. For the pitch black interior of the sandbox, I used the
{TileBlock2} placeable from the Manmade Props list
and scaled it by [0.5, 0.5, 0.13].

4. The tile block is centered within the sandbox by
setting both to the same 'Position No Snap' values.

5. Add the placed effect and set it's vertical (z) position
to 0.47 above the base of the sandbox. Lock the
effect's height and carefully center the flame's base
within the sandbox.

6. For a burning noise, I add a Sounds blueprint. The

Environmental node has list of a Fire sounds, and
from there I select Fire Smoulder. Most of the default
settings are acceptable, so I fine tuned the maximum
distance to 20 and the minimum to 3 by moving the
view about and checking the sound levels.

7. Finally, I selected all four objects, right clicked and
joined them into a group. The assembly is lowered to
the desired elevation (to cover the sandbox's feet).

93

Prefabs

Prefabs
Prefab blueprints are groups of placeables that can be

added to an area as a prefabricated unit. These are useful for
bundling together various placeables so that they can be
repeatedly used, such as the furnishings for a bedroom.
Once a prefab is copied to an area, it can be ungrouped by
selecting the object in an area, right-clicking and choosing
'Ungroup'.

If you group several objects together and select them, you
can right-click and choose Export Group to save the
collection to a Prefab file. When you save the Prefab to the
override folder, located in your documents under the game
directory, the blueprint will appear in the list the next time
you start the toolset. However, you will not be able to
modify the properties of the resulting blueprint.

Properties

When a prefab is selected in the Selection panel or in an
area, it's properties will be displayed as a list of parameter
names and values in the Properties panel under the
Properties tab. The properties are subdivided into Basics,
General and Misc blocks. Each block can be contracted or
expanded using the small plus/minus box at the left of the
header.

Basics

After a prefab is placed in an area, several of these fields
are moved to the Misc block.

• Classification – This determines where the prefab will
appear in the blueprint tree.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing.

• Localized Description – As a prefab is not selectable
in the game, this field is not used.

• Localized Name – This is used as an identifier in the
blueprints list.

• Tag – The string used to reference the light from a
script or conversation.

• Template ResRef – The resource name of the blueprint

template that this object inherits from.

General
• Resource Name – Is a unique, 32-character name that

serves as a blueprint identifier.

Misc
• Group – Unknown.

94

Conversations

Conversations
A conversation consists of a branching tree of dialogue

strings that are used to perform social interactions with
creatures or objects in the game. They can be used to yield
information to the players, to provide personalities to the
various inhabitants, initiate trade and to control the plot.
Within the game, a conversation is typically displayed using
a cut-scene interface that shows the alternating speakers at
varying camera angles.

A sample conversation

A “bark string” is a one-liner conversation that will be
displayed as a floating string above the speaker. An
extended dialogue consists of statements by the
conversation owner, followed by a list of one or more
possible responses by the player. The player's choices will
serve to steer the conversation and to determine the
consequences within the game. The various dialogue
branches may result in a change to creature's attitudes
toward the PC, exchanges of goods or information, the
addition or completion of quests, gaining or losing a PC
recruit, opening a store, revealing new locations on a map,
transporting the party to a different location, or even the
initiation of hostilities.

In the game, conversations with creatures are begun by
clicking on the creature when a quote cursor appears, or by
shift-right clicking and selecting "Talk To". For a placeable,
you need to make it non-Static and Usable, then put a script
such as "gp_talk_object" on the "On Left Click" property.

A conversation can be created in the toolset by selecting
the Conversation tab of the A/C/S panel, then right-clicking
and choosing 'Add'. Alternatively, a Conversation can be
added from the 'New' sub-menu under the File menu. When
a conversation is opened, an editor interface appears in the
Edit panel. A toolbar is displayed at the top of the panel, a
data table underneath, and an input and configuration
section at the bottom.

The initial row in the conversation data table is always
titled 'Root'. A data table can contain one or more
conversation trees, with each beginning at a node
underneath the root. Each branch in a conversation tree is
right indented from it's parent. Within the game, a
conversation proceeds down the branches of a tree until it
reaches a conclusion at an [END DIALOG] entry.

The red rows in the data table represent statements by the
owner of the Conversation or by NPCs, while the blue text
is used for replies by the player. An empty [CONTINUE]
line results in a drop through to the next line by the current
speaker, allowing an extended monologue.

A conversation data table with multiple separate discussions

The conversation data table can contain multiple separate
discussions with the same owner. The choice of which
discussion to use is controlled by the configuration
properties at the bottom of the Edit panel. The 'Show Once?'
field under the Node tab will determine how often a
discussion will appear during the game. Thus, setting this to
'Once per game' will only allow that node to be used once.

The Conditions tab can be used to apply more complex
logic for displaying a discussion node, such as checking the
value of a variable that is being used to track the state of a
quest. (See the Conditions section below for more details.)
Whenever a discussion is initiated with a creature, the game

95

Conversations

will display the first conversation node under the Root line
that currently satisfies the 'Show Once?' setting and the
Conditions.

Properties

When a conversation is selected in the A/C/S panel, it's
properties will be displayed as a list of parameter names and
values in the Properties panel under the Properties tab. The
properties are subdivided into Behavior, Comments, Scripts
and Voiceover blocks. Each block can be contracted or
expanded using the small plus/minus box at the left of the
header.

Behavior
• Default TGA – No effect.
• Delay per conversation entry – No effect.
• Delay per conversation reply – No effect.
• Multiplayer Cutscene – This is set to true for

conversations with more than two participants. When
true, the players will be unable to control their
characters while the conversation is in progress. See
the Node section below for information on how to set
the current speaker.

• Neverwinter Nights 1-style – The first version of
NWN used a dialog interface for conversations, rather
than the cut-scene panels. Setting this to true will force
the use of a dialog for the interaction. This may be
useful, for example, when conversing with an object.

• OverrideXML – in SoZ, for party chats this is set to
"partychat_ol.xml".

• PartyChat – this enables the party chat mode used in
the SoZ campaign.

• Prevent Zoom – This is marked as obsolete.

Comments
• Comments – This is a utility field for entering notes

that will not be seen in the game, but which can be
used during editing.

Scripts
• Abort Conversation Script – This script will be run if

the conversation is terminated before reaching an

[END DIALOG] entry. A termination can occur when
the Neverwinter Nights 1-style is being used and the
PC moves out of range of the conversation owner.

• End Conversation Script – This script is run upon
reaching an [END DIALOG] entry.

Voiceover

The following are used for lip syncing during voice-overs.

• Default Speaker Appearance –
• Default Speaker Gender –
• Default Speaker head Variation –
• Use Default Speaker Appearance For Lip-Sync

Animations –
• Voiceover Character Name –

96

Editing

Editing
A new entry can be added to the conversation data table by

selecting an existing entry in the data table, then choosing
'Add' from the conversation toolbar. Likewise, an existing
entry (and all of it's sub-entries) can be deleted by selecting
that entry and choosing 'Remove' from the conversation
toolbar.

When the conversation data tree starts to grow, it can be
convenient to contract selected nodes by clicking on the
small '–' icon at the start of the node, or expand a node by
clicking the '+' icon. There are also options in the toolbar for
controlling the display of multiple nodes:

• Expand All – This will expand any collapsed nodes in
the conversation.

• Collapse All – This will collapse all nodes in the
conversation into the root node.

• Expand From Here – This will expand all nodes from
the selected line downward.

• Collapse From Here – This will collapse all nodes
from the selected line downward.

Underneath each red entry, you can add more than one
reply. Within the conversation interface of the game, these
entries will be displayed as a list of potential replies, and the
line selected by the player will determine the branch of the
conversation to follow. The order of the entries under a
node can be rearranged by selecting a branch and clicking
on 'Move Up' or 'Move Down' in the Edit panel toolbar.

You can apply various criteria to each row that will
determine whether it will be displayed in the game. (See the
Conditions section below). When there is more than one red
entry under a blue row (or under the root node) then the
conversation will follow the first branch that satisfies the
conditions for it to be displayed. Thus you can have
multiple red rows, each with a different condition, and the
game engine will check each row in turn until the
conditions for a row are satisfied. This can be used, for
example, to follow separate conversation branches
depending on the outcome of a skill check by the player. It
can also be used to manage the conversation based on the
state of the plot, the reputation of the player, the particular

biases of the conversation owner, and so forth.

Links

Linking is a method of replicating a conversation branch
to multiple locations within a data tree. To link to a
conversation branch, first select that branch and left-click
'Set Link Destination' from the Edit toolbar. Next, select the
entry under which you want the link to appear. (If the
destination was red then you must select a blue line, and
vice versa.) Clicking 'Insert Link' will add a gray text row
that is linked back to the destination. Any edits made to the
destination entry will also be applied to the linked rows.

Links can be used to efficiently manage a list of player
questions. After the player selects one of the questions from
the menu, the conversation proceeds down the branches
until the question is answered (or not). At that node, the
remaining questions can be linked under the conversation
owner's response. This can be repeated for each of the
questions, and the conversation will cycle through the
queries that the player wants answered, then exit at an
appropriate selection. (“I have to go now”, for example.)

The main drawback to using links is that they can
accidently result in perpetual loops. It requires some
planning and verification to prevent this situation. One
method that can help is to ensure that no sub-branch of the
linked node is linked back to a higher level in the
conversation tree. That is, if a linked destination node is at
the fourth indent on the tree, check that none of the node's
sub-branches is linked at the first, second or third indent.

A trivial example of a cross-linked Q&A conversation.
Note the comments between the pipe characters.

The node tab contains a field called 'Show Once?' that can

97

Editing

be used to determine how often a line will appear. This can
be used, for example, to prevent already-answered questions
from appearing again. Make sure that at least one of the
responses will always appear, however, or the conversation
may be aborted when none of the responses can be
displayed.

When you try to delete a node in the data table that has
one or more link destinations, a warning message will
appear giving you an opportunity to abort the action. If you
proceed, both the node tree and any links to rows in that
node tree will be deleted. As it may be difficult to
remember what links you had set in an extensive
conversation table, it is usually a good idea to replace the
links first before proceeding with the delete. One method of
identifying these links (in situations where the same line of
dialogue was used) is to add a temporary comment to the
destination row. Double-clicking on a link will take you
back to the original entry.

Text Input

A line of text on the data table can be edited with the input
box at the lower right of the Edit panel. If the input box is
too small, you can resize it by moving the cursor to the
borders of this input area, where the cursor will change to a
horizontal or vertical bar with two arrows, then left-click
and drag.

Along the top of the input area is a pull-down menu for the
intended language; this can normally be left alone.
Underneath is a button labelled 'Edit String Ref...' that is
used for editing string references from the dialog.tlk file. I
believe this file is used to store the strings that will be
translated during language ports.

The main edit box is used to input the text string that will
be displayed during the conversation. This is a simple word
editor that should accept ASCII characters, or whatever
your language version supports. There is no spell checking
available, but you can also paste strings here from system's
clipboard, allowing you to use a full-featured text editor.

Any text segment placed between a pair of pipes,
parentheses or curly braces will not be displayed during a
conversation, but will still appear in the data table. This is

convenient for keeping notes while editing an extensive
conversation, and is useful for distinguishing identical lines
and linked entries. You can hide any comments by disabling
the 'Show Comments' field in the Edit panel toolbar.

At the bottom of the edit area is a pop-up menu next to an
Insert button. This menu contains a number of character-
specific tokens that the game will configure appropriately
for the speaking character.52 Thus, if you select 'him/her'
and click Insert, the token '<him/her>' will be placed at the
current edit point, and in a conversation either 'him' or 'her'
will appear depending on the gender of the PC. (For
example, you might want the conversation owner to say
'Guards, take him to the dungeon', if the PC is male, or use
'her' for a female PC.)

The input box can allow a long string of text to be entered
for a conversation line. However, the area available for
strings in a cut-scene is not unlimited. Typically it is a good
idea keep the length of the speaker's entries to about 200
characters or less, and the PC responses to under 100
characters.

Font Format

The conversation's font can be formatted by means of
enclosing HTML-like tags of the form: <format>some
text</format>, where format is one of the following:

• 'italics' or 'i' for italicized text.
• 'bold' or 'b' for bold text.

Color text can be created using a <c=Color>some text</c>
tag pair, where Color is either a valid color name or a '#'
followed by a 6-character hexadecimal value. The valid
color names are listed in the 'nwn2_colors.2da' file; the
uppercase versions of these color names will also work.

The same Color Edit Form that is used to set tints can also
be employed to find the hexadecimal value of a particular
color. To use this method, select a color from the color
palette then write down the value listed in the HEX output
box. For example, the last color in the palette array along
the right side of the form is called Darker Warm Brown (per
the mouse-over pop-up) and has a hexadecimal value of

52 There are additional custom tokens available. See the
'ga_refresh_timedate_tokens' script, for example.

98

Editing

'603913'. The following string will display brown text:
<c=#603913>Darker Warm Brown</c>

Note that these font formatting techniques can also be
applied to item names and descriptions in their properties
fields, or to the map note text in a waypoint.

Tabs
At the bottom of the conversation Edit panel is a set of

four tabs: Conditions, Actions, Node and Animations.
These will change the configuration options that appear in
the lower left part of the Edit panel. The Columns selection
of the panel toolbar will display a menu that can be used to
select which of the configuration values will be displayed in
the data table. Thus, the scripts and script arguments
selected under the Actions tab can be displayed in a column
by selecting 'Actions' from the Columns menu.

Conditions

When this tab is selected, a table with a green background
will appear. This can be used to configure a sequence of
condition scripts that will be run prior to displaying the
selected line in the data table. Clicking on the 'Add' option
above the green table will add a row to this table, while
'Remove' will delete the selected row. The Move Up and
Move Down options can be used to rearrange the rows.

The toolset's built-in condition scripts use a 'gc_' prefix.
These are described in the Scripts section of the second
volume. To select a condition script, choose a row and click
on the down arrow under the Script column. You will need
to click on the 'Refresh' button in order to make the script's
input argument fields appear. If the 'Preview' option is set
above the condition table, the condition script for a selected
row will be displayed in the field below the condition table.
(It may be helpful to expand the display by dragging on the
borders.)

You can control the evaluation of the script by means of
the buttons to the left of the Script column. Clicking on the
'And' button will toggle it to 'Or'. Setting the 'Not' button to
true will cause the line to evaluate to true if the script
returns false, and vice versa. The conversation entry will be
displayed if the sequence of script logic evaluates to true.

For example, suppose you only want a conversation entry
to appear if the PC speaker is a dwarf and has an Intimidate
rank of 4 or greater. The first line of the condition table
would use the 'gc_check_race' script with a sTarget value of

99

Tabs

$PC_SPEAKER53 and sRace value of “dwarf”. The second
line would use the 'And' logic setting with the
'gc_skill_rank' script, an nSkill value of 11 (see the script
comments) and an nRank value of 4.

The gc_global_* and gc_local_* scripts can be used to
check the values of variables that were previously set in
scripts. (The global variables are associated with the
module, while local variables are assigned to a specific
object such as the conversation owner.) These values can be
used to track the state of the plot, and modify the
conversation accordingly.

Actions

The Actions tab will display a table with a pink
background. This is used to configure any scripts that will
be run when the conversation entry is selected by the player
or spoken by the conversation owner. The scripts are run in
the order listed within the table. To add an action script,
select the 'Add' option. Selecting a row and clicking
'Remove' will cause the row to be deleted. The Move Up
and Move Down options can be used to rearrange the rows.

The toolset's built-in action scripts use a 'ga_' prefix.
These are described in the Scripts section of the second
volume. To select an action script, choose a row and click
on the down arrow under the Script column. You will need
to click on the 'Refresh' button in order to make the script's
input argument fields appear. If the 'Preview' option is set
above the action table, then the action script for a selected
row will be displayed in the field below the condition table.
(It may be helpful to expand the display by dragging on the
borders.)

As an example, suppose you want the conversation owner
to take an item from just the PC then give some gold in
exchange. (A 'gc_check_item' condition script can be used
to check if the PC actually had the item.) On the first entry,
the script is set to 'ga_take_item', with the sItemTag field
set to the tag of the item, nQuantity set to 1 and
bAllPartyMembers set to 0. The second entry uses the

53 The target field recognizes key word strings that begin with a
$ symbol. These are defined in the 'ginc_param_const' include
file. Thus, '$PC_SPEAKER' sets the target to the PC speaker.

'ga_give_gold' script with nGP set to the amount of gold
and bAllPartyMembers set to 0. These exchanges will
appear in the player's chat window afterward.

The ga_global_* and ga_local_* scripts can be used to set
variables. These allow the state of the plot to be tracked
based on the variable values, and they can be checked by
condition scripts during future conversations.

Node

Choosing this tab allows a set of properties to be
configured for the selected conversation row. The properties
are subdivided into Behavior and Line blocks. Each block
can be contracted or expanded using the small plus/minus
box at the left of the header.

Behavior
• Animation – This field shows the animation setting

selected under the Animation tab. See the Animations
section below.

• Camera Settings – This expandable field can be used
to configure the camera for the cut-scene display. See
the Camera Shots section below.

• Delay – This is the minimum delay that must occur
before the player can cause the conversation to
proceed to the next line.

• Quest – This is used to update the player's journal.
• Show Once? – This field is used to control how many

times the line will appear. The available options are
Always, Once per conversation, Once per creature that
uses this conversation, and Once per game.

• Sound – The prefix for one of the game's '.wav' files
can be inserted here, such as for use as a voice-over.
These can be found under the various Sound* folders
in the NWN2 program folder, or place a '.wav' file in
your local document override folder.

• TGA to display – The prefix for a '.tga' file in the
campaign or module folder can be inserted here. It will
be displayed instead of the camera view.

Line

Most of these fields are used for voice overs and lip
syncing. They can be ignored unless you plan to implement

100

Tabs

that functionality in your module.

• Comment – This is a utility field for entering notes
that will not be seen in the game, but which can be
used during editing.

• Link Comment – Unknown.
• Listener – This can be set to the tag of the creature that

the speaker is facing.
• Needs VO – This is a flag that is used for internal

development by the toolset vendor.
• Speaker – The tag of the current speaker. If you want

the conversation to include multiple participants, you
can use this field to control which red line is spoken
by each character. When this is empty, it defaults to
the conversation owner or player, as appropriate.

• Speaker Appearance – This is set to the body type of
the speaker.

• Speaker Gender – The speaker's sex.
• Speaker Head Variation – The head variation of the

speaker, as set in the 'Appearance (head)' field of the
creature's properties.

• Text – The text string as it will be presented during the
conversation. This is basically a copy of the input box
to the right of the node properties.

• VO needs to be recorded – This is a flag that is used
for internal development by the toolset vendor.

• VOPadding – Perhaps a time value?

Multiple Conversations

The 'Show Once?' field of the Node table can be used to
control when a conversation branch will appear. If it is set
to 'Once per game', for example, that line will only appear
on the first occurrence. Thereafter it is treated as a non-
existent branch. If a Conversation has multiple nodes under
the Root row, and each one is set to 'Once per game', then
every time a conversation is held with the owner, the next
node under the Root row will be displayed.

A combination of the 'Once per game' field and the
condition scripts can be used to fine tune what branches of
the data table will appear during a particular conversation.

Camera Shots

During a cut-scene conversation, the placement of the
view is determined by the Camera Settings on the Node tab.
For most conversations between the PC and an NPC, the
default setting of Random works well. Occasionally,
however, you may want to place the view so that it is facing
a particular direction from a specific position. This can be
implemented using the Static Cameras blueprint.

To create a static viewing position, select the Blueprints
tab on the Selection panel and choose Static Cameras.
Creating and selecting a Static Camera blueprint will place
a green camera-like shape within the area. After a camera
object is placed in the scene, select Preview from the
Properties panel. This will display the scene as viewed
through the camera lens. You can maneuver the camera
about, change the height, then tilt and pan the camera object
until the preferred view is obtained. (It's a good idea to set
Position Lock to true once the location and height is set.)
Finally, set the camera object tab to a unique name.

The next step is to place the camera scene into a
conversation. Select the particular line in the conversation
tree, then click on the Node tab. Open up the Camera
Settings row and change Mode to Static Camera. When you
choose the StaticCamera field, the popup menu will allow
you to select the camera under the area name, based upon
the camera tag. Finally, to make the scene remain in the cut-
scene for a period of time, change the Delay field to
however many seconds you want it to appear. The
conversation will not advance until this time is complete.

If you want something to happen during the cut-scene
view from the static camera, you can add scripts to the
Actions tag. For example, the ga_play_animation script can
be used to cause a creature to perform an animation.

Animations

Each node in a conversation can have an animation
associated with the speaker. First select the line of text and
then the node tab. In the Animating Creature Tag list, select
the creature to animate; usually the speaker. (A possible
exception could be if you change the camera setting and
want the viewed creature, as identified by its tag, to perform

101

Tabs

an animation.) The listed animations are equivalent to those
available with the ANIMATION_FIREFORGET_*
constants via the ActionPlayAnimation function.

Next, select an animation from the Body Animation list.
(Not every creature will be able to animate all animations,
so you may need to experiment.) An asterisk will appear
next to the selected creature indicating an animation has
been selected. If you want to deselect the animation, select
the creature and click the Clear button.

To view the current animation for a conversation node,
click on the tag with the asterisk in the node interface. The
Body Animation list will scroll to the selected animation.

The Facial Animation feature doesn't appear to work.

Blurt Strings

Conversation entries that consist of a single line of speech
are known as one-liners, or "blurt strings". These appear as
a floating line of text over the creature. They can be used,
for example, to provide a brief response to a selection of the
creature by the player. Another use is as a random comment
triggered by a heartbeat or on perception event.

Multiple one-liners can be put in a conversation file. To
choose a line at random, you can use the 'gc_rand_1of'
condition script. The comments section at the top of the
script explains how to use it. (To script a one-liner response,
use the SpeakOneLinerConversation() function.)

Intelligent Weapon Conversation

An intelligent weapon requires a Conversation in order to
communicate with the PC. The name of this conversation
should be the same as the weapon tag, and the conversation
should include both one-liner messages and interactive
conversations.

One-liner Messages

A one-liner message can be set to randomly appear when
the intelligent weapon is equipped, unequipped or strikes an
opponent. The odds for one of these message types to be
generated is set by the percent 'CHANCE' configuration
constants in the 'x2_inc_intweapon' file. When a one-liner

message is triggered, the following two local integers will
be set on the PC:

X2_L_INTWEAPON_CONV_TYPE
• equals 1 when item is equipped.
• equals 2 when item is unequipped.
• equals 3 or 4 when the item strikes a target.

X2_L_INTWEAPON_CONV_NUMBER
• when the type equals 1 or 2, this is set to a random

integer from 1 to 5.

• when the type equals 3, this is set to a random
integer from 1 to 20.

• when the type is 4, this is set to the result of a
GetRacialType call that is run on the target.54

Within the Conversation, these local integers can be used
by Condition rules to select the message to be presented.
You can configure up to 58 one-liner exclamations: 5 for
On Equip, 5 for On Unequip, 20 for On Hit, and 28 for On
Hit against specific races. It is also possible to fire one-liner
messages from a trigger by a call to 'IWPlayTriggerQuote'.
For an example of a triggered one-liner for an intelligent
weapon, see the third volume of the NWN2 Toolset Notes.

To check for the specific message being called, the one-
liner Conversation entry could perform a logical AND of
two 'gc_local_int' calls on the local integers listed above.
For example, suppose there is a one-liner entry intended for
an unequip event with conversation number 3. A condition
check can be for a type 2 (unequip) conversation by passing
the following parameters to 'gc_local_int':

• sVariable = X2_L_INTWEAPON_CONV_TYPE

• sCheck = 2

• sTarget = $OWNER

This can be logically AND'd with a second condition check
of the unequip conversation number using a 'gc_local_int'
call with the following parameters:

• sVariable = X2_L_INTWEAPON_CONV_NUMBER

• sCheck = 3

• sTarget = $OWNER

54 See the 'racialtypes.2da' file for the valid return values.

102

Tabs

The resulting Conditions entry should look like:
gc_local_int("X2_L_INTWEAPON_CONV_TYPE",
"2", "$OWNER"), AND gc_local_int(
"X2_L_INTWEAPON_CONV_NUMBER", "3", "$OWNER")

Custom Condition Script

Note that it is somewhat inefficient to call 'gc_local_int',
possibly twice each, for up to 58 consecutive Conversation
entries. To improve the performance, I created a short
Condition script called 'gc_match_iw_msg' that works like
the following:
// gc_match_iw_msg
int StartingConditional(int nMatch)
{
 int nConvType = GetLocalInt(OBJECT_SELF,
 "X2_L_INTWEAPON_CONV_TYPE");
 int nConvNum = GetLocalInt(OBJECT_SELF,
 "X2_L_INTWEAPON_CONV_NUMBER");
 return (nMatch == (1000*nConvType) + nConvNum);
}
This script multiplies the conversation type by 1000, then
adds the conversation number and compares the total to an
integer passed as 'nMatch'.

With this script in place, the valid ranges for nMatch are:

• 0: All interactive conversations
• 1001‒1005: Equip one-liners
• 2001‒2005: Unequip one-liners
• 3001‒3020: On hit one-liners
• 4001‒4030, 4250: Specific race hit one-liners
• 5001+: Trigger one-liners

The '4250' is for the Dwarf; based on a value of 250 set for
the conversation number by the 'IWPlayRandomHitQuote'
routine in 'x2_inc_intweapon'.

In the example earlier where the conversation type was 2
and the number was 3, the routine will only return TRUE
when only when an nMatch value of 2003 is passed . The
resulting Conditions entry in the Conversation tree will look
like this:
gc_match_iw_msg(2003)

Interactive Conversations

The Conversation file can include interactive discussions
with the PC. These are triggered by the 'Talk to' selection in

the item pop-up menu. Prior to the start of a discussion, the
local integer X2_L_IN_INTWEAPON_CONVERSATION
will be set to TRUE on the PC speaker. When the
conversation is complete, this integer will be set to FALSE.
Hence, the start of every interactive discussion should
include a condition check of type 'gc_local_int' with the
following settings:

• sVariable = X2_L_IN_INTWEAPON_CONVERSATION

• sCheck = 1

• sTarget = $PC

For best results, the interactive conversations should be
moved to the top of the Conversation tree so that the game
engine doesn't need to run all the condition checks for the
one-liner conversations.

Each conversation between the PC and the weapon will
use a new placeable to run the conversation. Hence, any
state variables generated as a result of the conversation will
need to be stored on the PC, rather than the placeable.

103

Tools

Tools

Journal
The journal is a log book for recording information related

to player quests. In addition to providing colorful ,
expansive descriptions, it can serve to jog a players memory
about the plot details. During a game the journal can be
updated as specific events occur, such as an Action in a
particular branch of a conversation or as the result of a
command executed by a script.

Journal interface

The journal entries can be configured by selecting 'Journal'
from the View menu. This places a copy of the Module
journal editor in the Edit pane. The journal entry for a quest
consists of a Category node with one or more entries
underneath. The 'Add Category' option at the top of the
editor can be used to create a new quest category. When a
category is selected, the following input fields appear at the
bottom of the editor:

• Comment – this can be used to record development

notes that will not appear during the game.
• Name – the string that will appear in upper case

characters as the title in the game journal entry.
• Priority – a sort field that a player can use to organize

their journal entries. It is selected by a menu and the
possible values range from Lowest to Highest.

• Tag – a unique string that is used to identify the quest
entry in conversations or script commands.

• XP – the experience point value awarded to the
player character for completing the quest. Typically
this is set relative to class level × 1,000 XP; the
experience needed to reach the next level.

Each quest category can have one or more entries. These
are the strings that are placed under the associated category.
A entry is placed after the current selection using the Add
Entry button along the top of the Edit pane. Each entry is
assigned a unique identifier; typically in increments of 10 so
that entries can be inserted in between.

When an Entry is selected, the following fields appear at
the bottom left:

• Comment – this can be used to record development
notes that will not appear during the game.

• Endpoint? – if this field is true, the quest will be
flagged as completed when this entry is inserted into
the Journal. At that point the XP will be allocated to
the player character.

• ID – the identifier used to reference this entry in
combination with the associated Category tag.

The message for an entry is edited in a text box to the
lower right. This field can include paragraph breaks, blank
lines and font formatting (see font formatting in the
Conversation section). Every entry needs to be able to stand
by itself in the journal because any previous entries are
removed when the new entry is inserted. Thus a copy-paste
may be needed to preserve some details between the entries.

During a conversation, a journal entry can be added as an
action using the ga_journal script, with the appropriate tag

104

Journal

in the sCategoryTag string and the ID in the nEntryID field.
When the journal is updated, a message will appear in the
middle of the conversation. The XP award for completing a
quest can be granted with the ga_give_quest_xp action
script in the same conversation branch as the ga_journal
entry, with the appropriate tag in the sQuestTag field. (I like
to include it near the end of the conversation so it is visible
in the chat window afterward.)

In scripts, a journal entry can be inserted using the
AddJournalQuestEntry command.

World Map Editor
The World Map Editor plug-in (hereafter abbreviated

WME) can be used to create a transition map for the player
to move his party between different areas.

A Campaign Cartographer image in the world map editor

A world map is activated when the player clicks on a
World Map Transition trigger, which is usually placed at
egress points of an external area (such as a city gate).
Clicking on this trigger will run the 'gtr_world_map_cl'
script, which calls the DoShowWorldMap() routine from
'ginc_worldmap'. The trigger has a variable called "sMap"
that is set to the name of the world map to display. This
variable name should match a WMP file that was generated
using the WME. (Hence, in the original campaign, the
initial world map file is called "Highcliff.WMP" and the
value of the "sVar" string variable in the World Map
Transition trigger is "Highcliff".)

The process of creating a World Map file and its
associated scripts is explained in detail by Sunjammer's
excellent World Map Guide v1.01 PDF document, available
at the NWN Vault web site. The reader is referred to that
document for guidance.

Black Map Image

An issue when running the toolset in Windows Vista is
that the WME map image may appear completely black.
One solution for this is to load a new map in the following
manner:

• Start the toolset in the default mode without opening a
module.
• From the Plugins menu, select World Map Editor.
• From the File menu, choose Open... and open your

module.
• In the World Map Editor, choose New from the File

menu.
• Load a WorldMapImage file.

The image should now display properly. When you have
done this once, the editor seems to run normally thereafter.
However, if you open an existing WMP file, it may come
up black again. In this case, just select the WorldMapImage
file again and it should appear properly.

If the above approach doesn't work, there is an alternative.
For this method, note that the black map image problem
occurs when using a Targa image file, but it does not with a
D3D/DDS file. However, the width and height of a
D3D/DDS file is limited to powers of two, such as 512 or
1024. Hence, a work-around is to copy your 647 × 647
Targa file image into the upper left corner of a 1024 × 1024
D3D/DDS image, then do your editing using the latter file.55
Note: make sure that all of your map points are located
within the original 647 × 647 image area and that the map
width and height properties are set to 647.

55 To avoid errors with the file format, I used a copy of the
world_map.tga file as the starting point. In PaintShopPro, I
expanded the Targa file to 1024 × 1024, blanked it out, pasted
in the new map and saved it to a new file name. Next I used
the DDS Converter utility to transform it to a D3D/DDS
format.

105

World Map Editor

The D3D/DDS image file should appear properly when
you first select it from the file open dialog by selecting the
ellipsis button in the WorldMapImage property field. If you
later re-open the world map, you may need to re-select the
image file again for it to display properly. When you are
ready to put the map into play, just change the
WorldMapImage property to the original Targa file, then
save.

Overland Map
The overland map is a feature that was introduced with the

Storm of Zehir (SoZ) campaign. It allows the player to be
able to freely explore a large area of wilderness terrain,56
which contrasts with the original world map approach
where the player can only visit specific locales. The
overland system uses exterior areas that have the
OverlandMap option set in the area properties. While
roaming the map, the player's camera position will remain
fixed at the values set in the OverlandMap block of the area
properties. (In SoZ, the camera is set to a distance of 25, a
pitch of 40 and a yaw of 0.) The player's view is framed by
a matte border and the objects on the map are scaled down
to about 10-50% of their normal placeable dimensions.
Likewise, the party is represented by a scaled down version
of the current leader. To enhance the experience, there are
reduced-scale placeables available from the OVERLAND
MAP PROPS classification, such as buildings, towns,
castles, forest canopies, etc.

To get started to creating an overland map, it is helpful to
take a careful look at the overland areas in the SoZ
modules. The traversable areas on the maps are overlaid in a
jigsaw-like manner by trigger regions. Each of these regions
runs a heartbeat script to handle the spawning of
encounters, based on variables set on the trigger.57 The
trigger's On Enter script modifies the movement rate of the
party for the terrain type and sets the background music.

The following local variables can be set on each terrain

56 From what I can gather, the map scale is roughly 10 miles per
grid square.

57 See the nx2_tr_terrain_hb heartbeat script from SoZ.

trigger:
• nTerrain – this constant matches one of the nine terrain types

defined in "ginc_overland_constants".
• nEncounterChance – the base percentage chance to spawn a

random encounter. This is modified based on the game
difficulty setting and the total number of active encounters is
capped at 15.

• nEncounterTable – this gives a row number in the
'om_encounter_table.2da' file. The 'ENC_2DA' column of
this table lists the various overland map encounter 2da file
prefixes. Hence, row 19 lists 'om_enc_g_sam_plains', which
references the 2da file for the Samarlogh plains. The
'om_enc_*.2da' files contain lists of encounters for up to five
creature types per row.

• nRespawnTime –
• nTerrainBGM – this sets the background music for the terrain.

The track is selected from the Music_Track column of
'om_terrain_rate.2da' for the current terrain type.

Hidden locations and so-called "goodies" are generated at
Ipoint placeables that run the 'gb_hidden_loc_hb' heartbeat
script. This script checks whether the the PC spots the
hidden location based on proximity and spot skill, then
auto-generates the placeable object at the Ipoint location on
a success. This placeable's tag is parsed from the Ipoint's
tag, changing "_ip_to_" into "_plc_to_". For example, the
Ipoint tag "g00_ip_to_g23" becomes the placeable tag
"g00_plc_to_g23". In the SoZ campaign, the latter tag
corresponds to a Cave placeable blueprint. When the player
clicks on the placeable, it launches a conversation asking
whether to enter the cave, which then runs the
"ka_olmap_visit" script. This causes the party to jump to a
waypoint that is parsed from the placeable tag (replacing
"_plc_to_" with "_wp_from_"). The "g23_wp_from_g00"
waypoint is located in the "g23_firenewt_cave" area.

The neutral encounters that move along the roads during
the game are generated by the overland map area heartbeat
script. This uses the local variable "nEncounterTable" on
the area to list a row in 'ENC_2DA' for the neutral
encounter 2da file prefix. In the case of the 'g00_overland'
map in SoZ, this uses the 'om_enc_g_neutral.2da' file to
generate the encounters. These are configured to follow the
nearest waypoint walk path.

The area heartbeat script 'nx2_ol_hb' looks for a local

106

Overland Map

string variable named 'sHeartbeatScript' on the area. This
contains an area-specific heartbeat script that performs
special encounter spawns. These are usually based on
journal entries. See, for example, 'g00_area_hb'.

Plugins
Various utilities are available from the NWN2 moding

community that you can use to enhance the functionality
your toolset. I'll describe a few from the NWVault web site
that I have loaded and used.

When you download the plug-in, it may be in a
compressed (zipped) folder or it could have a '.rar' suffix. In
the latter case you will need to use an archive compression
utility like 7zip or 'Zip Genius' to extract the files. I used the
7z465-x64 windows installer to load the 64-bit version of
7zip and it worked properly in Vista.

Prior to loading any third-party plug-in, you need to run
the Toolset, select 'Options...' from the 'View' menu, then
set the 'AllowPlugins' setting to 'Load all plugins'. You will
need to exit the toolset prior to updating any of the plug-in
files in the NWN2 install directory.

There are other plug-ins available than those listed below,
and I encourage you to explore what is available. The plug-
ins can allow you to make edits in the toolset much more
effectively, and some can provide enhanced functionality.
However, you'll need to make certain that the plug-in will
work with the current version of the toolset you are using.
For example, some may work with MotB but not with SoZ.

The Grinning Fool's Creature Creator

Grinning Fool authored this alternative creature creation
wizard that you can use in place of the Appearance Wizard
that comes with the toolset. The download is a zipped folder
containing two '.dll' files and installation instructions. The
following files must be placed in the game install folder:

• NWN2Toolset\Plugins\CreatureCreator.dll
• NWN2Toolset\Plugins\NWN2PluginToolsLibrary.dll

Once the plug-in is installed, you can select 'Launch
Wizard' from under the 'Creature Creator' item in the Plugin
menu. It will step you through the basics of creating a
character, allowing you to choose the basic parameters,
class and level, ability scores, saving throws, appearance,
tinting and scale. However, you will still need to adjust the
skills because it seems to assign more skill points than are

107

http://www.7-zip.org/

Plugins

normally allowed.

I'm not sure whether this plugin is fully functional yet
because the 'Next Steps' panel has several disabled buttons
that I am unable to activate. You will still need to manage
the creature's feats and skills through the Properties
window.

InCharacter

This plug-in by Olblach allows you import '.bic' files as
Creature blueprints, or export blueprints as playable
characters. A '.bic' file is generated each time you play the
NWN2 game and create a new player character. Thus you
can import characters that you have used in the game and
turn them into an NPC.

The installation instructions come with a warning about
making backup copies of your character files and modules
before trying it. For further provisoes, read the README
file included with the download. The following file must be
placed in the game install folder:

• NWN2Toolset\Plugins\InCharacter.dll

Once installed, an 'InCharacter' menu item will appear
under the toolset's 'Plugins' menu. When selected, this will
open a dialog interface. Clicking on Import will provide
instructions on where to search for '.bic' files. The imported
character will appear under the Creatures section of the
Blueprints tab in the Selection panel. You'll still need to fill
in some properties, including setting a tag, changing the
faction ID and importing a script set.

Lazjen's CPS Inventory Manager (CPSIM)

This plugin by Lazjen is delivered as a '.rar' file, so you
will need an archive compression utility to extract the
contents. The following file must be placed in the game
install directory under the NWN2Toolset\Plugins\ folder:

• LazjensCPSInventoryManagerPlugin.dll

To use the plugin, you need to select either a creature,
placeable or store (either an object or a blueprint) then
choose the plugin from the Plugins menu. This will launch a
dialog interface that allows you to manage the inventory in
greater detail than is available with the toolset properties

window. Because of the large amount of graphics being
loaded into memory, the interface can be somewhat slow to
load and a little sluggish at first.

The main panel at the left of the dialog displays a tabbed,
scrollable table of inventory, with the items listed in sort
order by name. Upon selecting an item from the inventory
or the list of all items, a panel on the right will display the
properties of the item. The cost of each item is listed, along
with the inventory icon. The only inconvenience is that it
won't let you read lengthy property fields such as the
Localized Description. For that you will need to use the
toolkit blueprint view.

Displaying a store's available armor inventory

Along the top of the window is a toolbar of icons and
options. These allow you to switch between inventory view
or the full list, set various store parameters, and update the
inventory item or blueprint. You can also filter the lists
based on a cost range, regular expressions, and so forth.
Unlike the toolset editor, this plug-in also arranges the
available items into their proper categories.

PowerBar

Demiun wrote this plug-in that will perform a number of
useful operations. The readme file in the download zipped
archive lists the functionality provided. The following file
must be placed in the game install folder:

• NWN2Toolset\Plugins\NetSpell.PowerBar.dll

After it is installed, an 'Open Module' dialog will appear
when the toolset is launched, giving you an opportunity to
select a module to open immediately. Modules that were

108

Plugins

previously opened with this dialog will be listed in the table,
making them easy to select. The plug-in will also load a
new menu bar in the toolbar. Each item in the bar has menu
of convenient functions for use in the toolset.

Here are some examples of the toolbar functionality:

• Object/Cut Walkmesh ‒ this will create a Walkmesh
Cutter around the base of a selected object. Note that
this works for single trees but not clusters of trees.

• Object/Tweak ‒ the scale, facing and tint of the
selected objects is randomly modified within the
selected range.

• Area/Randomize Trees ‒ some or all of the trees in the
area are given randomly generated seeds, allowing you
to just copy the trees into place and then randomize
their appearance afterward.

• Area/Rotate ‒ this will rotate an interior area in 90º
increments, then optionally bake the new area. Both
tiles and objects are collectively rotated.

• 2da/Open ‒ brings up a dialog that allows you to apply
a filter rule to the 2da file list, then open a selected
file.

• Browse/Icons ‒ this is an icon viewer with the icons
categorized into groups. You can also browse the
icons you have assigned to item blueprints.

• Browse/VFX ‒ preview the various '.vfx' files in a
rendered pane.

SpellPlug

This essential contribution by Demiun will check and fix
the spelling and grammar of your text entries. You can use
this plug-in to verify conversations, journal entries, object
descriptions and the clipboard content.

SpellPlug version 1.22 consists of the compressed folders
SpellPlug.zip, SpellPlug_dict.zip and SpellPlug_gram.zip.
The README in the first folder contains the installation
instructions. The following files must be placed in the game
install folder:

• NWN2Toolset\Plugins\SpellPlug.dll
• NWN2Toolset\Plugins\NetSpell.SpellChecker.dll

Once SpellPlug is activated, you will need to open the

'Options...' dialog under the View menu, select SpellCheck
from the Plugins node, then set the 'Dictionary File' and
'Grammar Rule File' fields to the paths of the respective
files.

To check the spelling and grammar of your game, click on
the 'SpellCheck' option in the Toolbar and choose the
'Resources' menu item. This will open a modal dialog
window that allows you to run checks on the various
resources.

Spelling checker resource selection

As you perform a spelling check, you may find it easier to
use the Enter key (rather than the mouse) to cycle through
the checks and warnings. The main drawback with the
interface is that, as long as no spelling issues get flagged,
there is no means to cancel the spell check. For a lengthy
conversation, you may have to cycle through every line.

Note that in Vista the text panels in the Warnings window
displayed with black text on a black background. You can
highlight the fields to read the messages. The warnings can
be configured with the 'Options...' dialog.

Incompatible Plugins

Each plugin release is compatible with a particular patch
level of the toolset. This required patch level is normally
listed on the download page. If you try to load a plugin with

109

Plugins

a lower patch level than your current toolset, you will
receive a 'Could not load plugin' error message and the
plugin will not be available.

NWVault community member Kethlak has built a utility
called 'Plugin Version Fixer' that can be used to make the
toolset load the incompatible plugins. Be warned, however,
that the plugin may not function properly with the patched
toolset. (The other alternative is to load a copy of the toolset
and patch it to the compatible level.)

Installing the Plugin Version Fixer requires modifying a
small XML file and changing a pair of fields to match the
current version of your Toolset. This is the version that
appears when you open the Toolset, then select 'About...'
from the Help menu. In my case the patched version
number is '1.0.1588.0', but this will need to be changed
when the toolset gets patched again. This file is copied to
the game install folder:

• NWN2Toolset\NWN2ToolsetLauncher.exe

The following plugins required the above modification
before they would load without an error.

• Resizer ‒ this plugin from author Bool allows you to
size multiple selected objects at the same time. You
can increase or decrease the sizes by 10% multiples
using the Home and End keys, respectively. (Thus,
two consecutive Home keys will increase the scale by
1.1 × 1.1 = 1.21, or +21%.) The Backspace key will
restore selected objects to their default scale. This
plugin doesn't work on doors.

• Tree Cutter ‒ author sghctoma wrote this plugin that
will cut a set of selected Trees out of the walkmesh. It
does this by generating a Walkmesh Cutter around the
base of the trees. The tool also gives the trees a
randomly generated seed. Unfortunately this plugin
has not been updated since version 1.03, so it does not
work with some of the tree types. (In one case it
crashed my toolset.) Equivalent functionality is now
provided by the PowerBar.

110

Writing Scripts

Writing Scripts
The toolset has a built-in programming language that

allows detailed customizing of a module by means of
scripts. A script consists of a series of commands, variables
and programming logic that can perform various checks of
the game state, change the state of the game, or return a
result.

Scripts can be used in conversations to check whether a
particular condition is true and to make various
modifications to the module or campaign. Scripts are also
used to process various events, and to control the behavior
of creatures or objects during the game.

Editing
The toolset includes a script editor that can be used to

create and compile a script. There are two methods to create
a script. From the File menu, select New then Script. (The
keyboard equivalent is Alt+f-n-a.) Alternatively, from the
pane that shows the various areas, conversations and scripts,
select Scripts them right click the mouse and choose Add.
There is also a menu of 'Add from Template' scripts to
assist in the creation of some common script types.

 To edit the script, select the script name from the list,
right-click the mouse and choose Open.

The main panel is the editor itself, where you can create
and modify the code. This language is similar to ANSI/C,
so a familiarity with the latter is helpful. As always, make
sure that non-comment statements within a function scope
end in a semi-colon, all variables are declared before use,
and the proper variable types are being passed to functions.

Underneath the editor is a results panel that shows the
results of a compile or details a selected function or
constant. The buttons along the top of the editor include a
“Save & Compile” option. Clicking on this button will
cause the toolset to attempt to compile the code. If there is
an error, it will appear in the compile results field at the
bottom of the editor.

To the right is a Script Assist panel showing the built-in
functions, constants and template scripts. Selecting a

function or constant in this list will cause a brief description
to appear below the editor. These are described in the
second volume. The Script Assist can be hidden or
displayed by toggling the Hide/Show Script Assist button at
the top of the panel.

To close a script, right click on the Edit panel tab and
select Close (or Ctrl+Shift+C).

Variables

Variables are declared and used as in the C# language. In
the toolset script editor, the standard variable types are
printed in blue.

Basic Types

The following basic data types are used by the built-in
functions:

• A boolean is a variable that can have a value of TRUE
or FALSE. The boolean is an integer that has a value
of zero when it is FALSE, and non-zero when TRUE.
Booleans are used to code 'if' or 'while' logic in a
script. In the toolset code, it can be indicated by a 'b'
prefix.

• An integer is a variable that can have a range of
numerical values that do not have a fractional
component. It is used to track values that change by
whole increments, such as the amount of gold, a
character's class level, the number of hit points
remaining or a creature's Strength. In the toolset code,
it is often indicated by a 'i' or 'n' prefix. Integers are
signed 32-bit numbers and default to 0.

• A float is a 32-bit precision decimal value that can
have a fractional component. It is often used to track
physical scale within the game, such as the distance to
an object or the scale of an enlarged object. A floating
point constant can have an optional letter 'f'
immediately after the decimal suffix.

• A string is a sequence of characters that can encode a
name, tag or some operation. It can be defined by

111

Editing

placing the characters inside double quotes. In the
toolset code, it is often indicated by a 's' prefix. Strings
include command overloading of the '+' operator,
allowing strings to be appended. Within a script,
double-quoted string values are printed in dark red.

A const statement can be used to create a constant
declaration that can not be modified by the code, and it is
placed before the variable declaration. Only an int, float or
string can be declared as a const. For example:
const int MY_CONSTANT_VALUE = 12;

Structured Types

There are also several standard variable types that
encompass multiple fields and are used by specific function
calls. These behave like a 'struct' in the C language,
although I haven't been able to access the struct fields.

• An event will trigger a script to run.
• An itemproperty is an item power or limitation that is

set via the 'Item Properties' field in the properties pane.
• A location is a position within the game. It includes

coordinate information and the area. Locations
correspond to the Position information in the
Properties panel, but also include a facing and the
Area identification.

• An object is a variable that represents some
component within the game. It can be a creature,
placeable, waypoint, item, and so forth. It is up to the
script to determine whether the object is valid and has
the appropriate tag or type.

• A struct can be declared that can include multiple
arbitrary variables of different types. It is used much
as in the C language, and can be passed as an input-
only argument and returned as a result. See
'x2_inc_craft' for an example of how to create and use
a struct.

• A talent is used to represent a feat, skill or spell.
• A vector describes the distance and direction of one

location with respect to another location. Command
overloading allow vectors to be added to and
subtracted from each other, and they can be scaled by
multiplication or division by a float value.

An action is a special type of variable that can not be
declared. Instead it is used like a function pointer reference
in calls such as AssignCommand that return a void value.
Functions that begin with 'Action' represent types of activity
that can be performed by a creature, and these can be passed
as action arguments. Likewise, you can pass a script
function as an action argument, as long as it returns a void.

Initialization

Variables are initialized by default, but, as always, it is
good practice to initialize them prior to use. This can be
done on the same line as the variable declaration. Here is an
example:
int bIsReady = TRUE;
int nCount = 10;
float fMaxRange = 20.5f;
vector vPosition = [0.0, 0.0, 0.0];
string sName = "My name is fred.";
object oCreature = GetObjectByTag(

"c_blackdragon");
Argument variables can have default initializers. These are

defined in the function call definition, and the initialization
means the argument does not be passed when the default
value is acceptable. For example:
int MyFunction(

int bVal = FALSE;
object oTarget = OBJECT_SELF)

Note that if a value is passed for an initialized argument,
then values must also be passed for all preceding
arguments. Thus, in the above example, if an object is
passed in the oTarget field, then a value must also be passed
in the bVal field.

Constants

The toolset includes a set of global constants that can be
used within a script. These are typically in uppercase type
with underscores as word separators. Constants have a fixed
numerical value and are typically integers, but they can be
any valid variable type. To see the built-in list of integer
constants, select the Globals tab in the Script Assist area of
the script editor. The Script Assist includes a Filter box that
can be used to reduce the list to only those Globals that

112

Editing

include the input value. For example, enter the following for
a list of constants that include the substring '_MODE_':
MODE

Typically a 'const' is used to define a local constant
declaration.
const float FX_SIZE = 15.0f;

Selected constants have a special meaning within a script:

• OBJECT_SELF refers to the object that is executing
the script.

• OBJECT_INVALID is always an invalid object.
• TRUE is a binary true value, and FALSE is a binary

false value.

Flow Control

The toolset scripts provide C-like language functionality
for logical flow control of the code.

An 'if' command will execute the code statement within a
pair of curly braces if the statement within the parenthesis is
true. (That is, the statement within the parentheses must
have a non-zero value.) If the statement is false, the next
statement in an 'else if' sequence is evaluated. If the
previous statements were all false, then the final 'else' code
is executed. The brackets are optional if there is only a
single line of code.
if (statement) {
 // Code here
} else if (statement) {
 // Code here
} else {
 // Code here
}

A variant is the 'arithmetic if' operator, which evaluates an
expression, then returns the result before the colon if true,
or the second result if false.
int nAbsValue=(nTest > 0) ? nTest : -nTest;

A 'for' loop will repeatedly execute the code in the
brackets as long as the 'test' is true. The 'initialization' action
is executed before the first loop, and 'increment' is run at the
end of each loop.
for (initialization; test; increment) {
 // Code here

}
Typically this loop is executed by incrementing an integer

then exiting the loop when the integer exceeds a value. For
example, the following will run the code inside the curly
braces ten times before exiting:
int i;
for (i = 0; i < 10; i++) {
 // Code here
}

A 'while' loop will repeatedly execute the code between
the brackets as long as the 'statement' is true. A 'break'
statement will exit from the inner-most 'for' or 'while' loop.
while (statement) {
 // Code here
}

A 'switch' statement will compare the 'value' to each of the
'case' values. If there is a match, the code will be executed
up to the next 'break'. If there is no 'break' prior to the next
'case', then the execution will fall through and continue
execute the code in the next case section. When none of the
cases match, the code following the 'default' code is run.
switch (value) {
 case value1:
 // Code here
 break;
 case value2:
 // Code here
 break;
 default:
 // Code here
 break;
}

Functions are passed a set of zero or more parameters. The
subroutine then performs a series of steps and, optionally,
return a result. The result is passed back by a 'return' line
with a value that must match the function declaration return
type. For example:
object GetHeadGear(

object oCreature = OBJECT_SELF)
{
 if (GetIsObjectValid(oCreature)) {
 return GetItemInSlot(
 INVENTORY_SLOT_HEAD, oCreature);

113

Editing

 }
 return OBJECT_INVALID;
}

The only input parameter oCreature is an object;
presumably a creature. The script first checks if the object is
valid, then it returns the object that is in the head slot, if
any. If the oCreature is an invalid object, or if there is no
item in the head slot, then this function will return
OBJECT_INVALID.

Functions are defined within the scope of a script, or via
an include file. As in C++, the parameters can be given
default values that are used when the call does not pass a
value in that field. For example:
void MyTest(

int nValue,
object oPC=OBJECT_SELF)

When MyTest is called as follows:
int n = 0;
MyTest(n);
then the second argument is set to OBJECT_SELF.

Variables can be defined that are local to the scope of a
function and the 'if', 'for' or 'while' blocks, but not within a
'switch'.

Compiling

The current script can be compiled by selecting the Save
& Compile button at the top of the Edit panel, or by
pressing f7. The compile will halt on the first error detected.
These list the script name with the line number in
parentheses, then the error message. It may not always be
immediately clear from the message what problem has
occurred.

Here are some of the error messages and the usual
suspects. Many of these are obvious, but I am listing them
for completeness.
ARITHMETIC OPERATION HAS INVALID OPERANDS
– This can occur when a value in a string appending

operation is not a string. Use one of the String* calls to
convert the value to a string.

DECLARATION DOES NOT MATCH PARAMETERS
– Check the arguments to the function call and see if the

number of arguments and their types match the
declaration. (Double-click on a built-in function to see
the declaration.) Non-initialized arguments must be
provided.

FUNCTION MAIN() MUST HAVE A VOID RETURN
VALUE
– Set the return value of main() to void.
INVALID DECLARATION TYPE
– There is an extra closing bracket before this line.
MISMATCHED TYPES
– Setting the value of a variable to a different type, such

as assigning a float value to an integer.
MULTIPLE CASE CONSTANT STATEMENTS WITHIN
SWITCH
– At least two case statements within the same switch are

checking the same constant value.
NO SEMICOLON AFTER EXPRESSION
– Check earlier in the script for a non-comment line

without a closing semicolon.
NO SEMICOLON AFTER STRUCTURE
– A structure definition must end with a semi-colon.
NON OPTIONAL PARAMETER CANNOT FOLLOW
OPTIONAL PARAMETER
– This applies to function arguments that include a

parameter that has a default value, followed by a
parameter without a default value. All parameters with
default settings should be at the end of the list.

NOT ALL CONTROL PATHS RETURN A VALUE
– The end of the function does not return a value.
PARSING VARIABLE LIST
– A variable initialization may be missing a semicolon.
– A variable initialization may be malformed.
– A subroutine name may be invalid.
UNDEFINED IDENTIFIER
– A function call may be missing or spelled incorrectly.
UNKNOWN STATE IN COMPILER
– A function may be missing a closing parenthesis, a

nested parenthesis or a comma.
– Attempted to declare an action variable.
– Attempting a C-style type cast of a constant.
– A comment tag '*/' exists without a preceding '/*'.

114

Editing

UNDETERMINED STRING CONSTANT
– A string is missing a double-quote character.
UNDEFINED FIELD IN STRUCTURE
– A structure variable name is being used that is not

defined within the structure.
UNEXPECTED END COMPOUND STATEMENT
– Missing a closing bracket.
VARIABLE ALREADY USED WITIN SCOPE
– A variable has been defined twice within the scope.
VARIABLE DEFINED WITHOUT TYPE
– A variable being used that does not have a defined type

within the current scope. It should be declared prior to
the first use.

– A constant value is not spelled correctly.

Debugging
When your module is running with the Toolset in the

background, you can activate the console interface by
pressing the back-tick/tilde key (`/~). This will cause a
shaded area to appear at the top of the display, along with a
'#' prompt where commands can be entered. To exit the
interface, press the back-tick/tilde key again.

Commands

You must be in debug mode in order to run commands at
the console prompt. This is activated by typing the
following command at the prompt:
DebugMode 1

After the console interface is activated, a list of available
commands can be displayed by typing:
command [filter]
where filter is a selection pattern. If no filter pattern is
supplied, all of the commands are displayed. Entering a
single letter will show all commands that begin with that
letter (whether upper or lower case.) However, a word filter
is case sensitive. Thus, you will need to use 'command Print'
to find the print commands.

The console commands are case sensitive. Many of the
commands modify the game graphics, cause internal
changes to the current game or print information that may
be useful for debugging (such as the values of variables).
Some of the commands toggle features on and off, so that
running the same command will switch to the opposite
setting.

Here is a brief description of some commands:

• Aabboxes – toggle the display of gray bounding
boxes around each of the visible contents in the area.
In the toolset, these boxes are seen (in yellow) by
selecting 'Bounding Boxes' from the Collision popup
menu.

• Animation – toggle the display of animation for
dynamic area contents, such as creatures.

• BugReport – this will open up a bug report text file.
• C2 or C3 – toggle the display of C2 and C3 data, as

115

Debugging

activated in the toolset by selecting 'C2 Data' and 'C3
Data' from the Collision popup menu.

• Capsules – toggle the display of some creatures
inside white spheres.

• CeilingMode mode -- this sets the display mode for
interior ceilings. A mode of 0 will hide the ceiling
when it blocks the view of the player; 1 will always
block the camera, and 2 will prevent ceilings from
being drawn. Mode 1 is the same as selecting
character mode.

• Daynight – toggle between day and night.
• Dropshadows state – setting the state to zero will

turn off drop shadows. Setting it to 1 will turn them
back on.

• Envshadows state – setting the state to zero will turn
off shadows from static placeables. Setting it to 1 will
turn them back on.

• Farshadows state – setting the state to zero will turn
on shadows from distant objects. Setting it to 1 will
turn them back off.

• Gfxoptions – this will open a dialog box that allows
you to set various graphics options, including
toggling the rain mode.

• GiveFeat ID – adds the feat identified by ID to the
current PC, or else all feats if no ID is specified. The
ID is a row number in the 'feats.2da' file.

• GiveItem resname – gives a copy of the item with
the Resource Name resname to the current PC.

• GiveSpell ID – this attempts to cause the current PC
to memorize the spell identified by ID. The ID is a
row number in the 'spells.2da' file. If the PC is of the
wrong class to cast the spell, then an error results.
However, there is no check for the required caster
level or number of spells allowed. Thus the 6th-level
blade barrier spell, with an ID of 5, can be given to a
1st-level cleric.

• GiveXP amount – awards the current PC an amount
of XP. If amount is not specified, the PC is awarded
enough to reach the next level.

• Hookpoints – toggle the display of hook points on
weapons.

• Lights – toggle the display of light radius spheres.
• Loc – prints the PC's current {x, y, z} vector position.
• MemStats – prints a dynamic table of memory usage

data.
• Ooboxes or obb_all – toggle the display of selection

boxes around every content and tile in the area.
• obb_cdoor – toggle the display of the selection boxes

around doors and door frames.
• obb_water – toggle the display of the game's

rendering rectangles around water planes.
• Paths – this toggles the display of a yellow cross

under each creature and a line pointing in the
direction each creature is facing. This line turns as the
creature changes facing.

• Polymorph ID – causes the current PC to polymorph
into the creature with object identifier ID. This ID is a
row number in the 'polymorph.2da' file. See
unpolymorph.

• PrintCreatures – prints the name, tag and object ID
of creatures in the area.

• PrintFeats target – lists the feats of the creature with
object ID target. If target doesn't exist, this will print
the feats of the PC.

• PrintLevelStats – prints the class, levels and
remaining skill points for the PC.

• PrintLocalVars target – lists the local variables
assigned to the target. This may print the output to a
file under a system-hidden folder called AppData in
your user directory.

• PrintPerception – prints a report about perception
from the perspective of the PC and the area creatures.

• PrintGlobalVars – lists the global variables.
• PrintRepository target – lists equipped items and

inventory of the target.
• PrintReputation target – prints a table of reputations

with respect to the target. The table shows reputation
score, whether it is in the creature's party, the faction
ID, object ID and name/tag.

• PrintScripts target – prints the script names for the
target at the console.

116

Debugging

• Rain state – set the rain state. A state of zero turns
off the rain.

• RemoveFeat ID – remove the feat identified by ID
from the current PC. The ID is a row number in the
'feats.2da' file.

• Resourcestats – prints the video memory statistics.
• rs – See RunScript.
• RunScript script(arg1, arg2, ...) – This will run the

script named script, passing in a comma-separated list
of arguments: arg1, arg2, and so forth. This can be
used, for example, to run various action scripts, ga*.
Thus, the following command will give the PC the
toughness feat (which is listed as #40 in 'feat.2da'):

RunScript ga_give_feat("", 40, 0, 0)
• Sceneintens [value] – when run without an argument,

this will print the current value of the bloom scene
intensity. When a floating point value is passed for
the value, this will change the bloom scene intensity
to match. Thus: Sceneintens 0.1.

• Shadows state – setting the state to zero will turn off
shadows. Setting it to 1 will turn them back on.

• Skels – toggle the display of creature skeletons. This
is the same as selecting the Skeletons button in the
toolset.

• Sky – toggle the display of the sky.
• Stats – toggle the display of summary statistics in the

lower left corner of the display.
• Surface or Surfaceonly – toggle the display of the

baked surface mesh.
• TakeDamage amount target – apply amount of hit

point damage to target.
• Textborder – toggle outline boxes around the player

interface graphics, such as the chat window.
• Trees – toggle the rendering of trees.
• Unpolymorph – return a polymorphed creature to its

normal appearance.
• Wami – "where am i". This is the same as the Loc

command.
• Wireframe – enables wireframe mode. This is

similar to selecting the Wireframe button in the

toolset. I haven't found a method to turn this off,
other than to restart the game.

The commands are not case sensitive. Help on a some
commands is obtained with the 'help' command, followed
by the command name. The up/down arrow keys can be
used to scroll through previously run debug commands.

Script Messages

In order to display debugging messages from scripts, you
will need to configure a setting in your account's copy of the
nwn2player.ini file. On Windows, this file should be located
under the documents folder of your user directory within a
sub-folder called Neverwinter Nights 2. If you can't find it,
try a search on nwn2player.

There are two variables of interest located at the bottom:
[Server Options]
Scripts Print To Log=0
Scripts Print To Screen=0
To display the messages on the screen, set the second name-
value pair equal to 1. Save the file and start the toolset.

The debugging messages will display after typing the
following at the console interface:
debugmode 1
debugtext
Any messages generated by a DebugPostScript function
should now appear on the upper left of your display.

The ginc_debug include file has several convenient
routines that can be used to print messages to the screen
from your scripts. For example:
#include "ginc_debug"
...
PrettyDebug("Display a debug message.");
Many of the built-in scripts will print debug messages that
you will see while the game is running.

Script Debugger

As the name implies, the script debugger is a tool that
allows you to step through a script and check if it is
working as expected. Use of the script debugger requires
that scripts be compiled with debug information. To do this,
choose 'Options...' item from the View menu, select 'Script'

117

Debugging

and change 'GenerateDebugInformation' to true.

The script debugger interface

The script debugger can be launched from within a script
by means of the SpawnScriptDebugger() call. To run the
debugger, you will need to do the following:

• In the Utils folder under the install directory, run the
DebugServer tool. This will create a small window on
the screen.

• The Neverwinter Nights 2 game needs to be run in
windows mode. In your Neverwinter Nights 2
document folder, edit the nwn2.ini file and change to
'FullScreen=0'. Note that when the game is in
windows mode you'll have to use the arrow keys to
turn the view.

For the script you want to debug, place the call to spawn
the script debugger just prior to the code you want to debug,
then recompile the script. The debugger interface will
appear whenever the script is being run by the game.

Don't forget to remove the SpawnScriptDebugger() call
after you have finished debugging.

Examples
To create your first scripts, it is helpful to examine the

various script templates and to peruse the scripting
reference in the toolset's build-in help. Additional examples
can be found in volume III.

Here is some trivial sample code to demonstrate the
notation:
#include "file";

/* My sample subroutine */
int my_test(object oPC) {
 int n = 0;

 /* Use a built-in function to test if
 * the argument is a valid object.
 */
 if (GetIsObjectValid(oPC)) {
 int i; // Define index before 'for'
 for (i = 0; i < 10; i++) {
 // Do something 10 times
 }
 }

 /* Call GetName to get object Local Name
 * then use overloaded string comparison.
 */
 string sMsg = GetName(oPC);
 if (sMsg == "me") {
 // This object is “me” so do something
 }

 // Sample switch statement
 n = GetNumActions(oPC);
 switch (n) {
 case 0:
 // Idle
 break;
 case 1:
 // Single action
 break;
 default;
 // Anything else
 break;

118

Examples

 }
 return n;
}

The 'if' and 'while' blocks allow variables to be defined in
scope, but this is not true of a switch statement. The index
variable must be defined before it is used in a 'for'
statement.

First-Next Pairs

The built-in functions include a number of First-Next pairs
that will cycle through a list of objects of a particular type.
Each time the 'First' function is called, it will reset the list
and return the first object matching the type. The
subsequent calls to the 'Next' function will retrieve the next
object in the list. By always checking whether the returned
object is valid, you can use this sequence to cycle through
all objects in the list using a while loop.

For example, the following loop will cycle through each of
the properties on a valid item oItem, returning true if a
property provides darkvision.
int GetItemHasDarkvision(object oItem)
{
 // Initialize the item property list
 itemproperty iProp =
 GetFirstItemProperty(oItem);

 // Cycle through the valid properties
 while (GetIsItemPropertyValid(iProp)) {
 // Check for darkvision
 int nIPT = GetItemPropertyType(iProp);
 if (nIPT == ITEM_PROPERTY_DARKVISION)
 return TRUE;

 // Get the next item property
 iProp = GetNextItemProperty(oItem);
 }
 return FALSE;
}

Inflict Lightning Damage

Suppose I want the object running the script to inflict
some number of six-sided dice of lightning damage to a
target creature, but the creature is allowed a Reflex saving
throw and can Evade, per the feat. In the sample code

below, the damage is randomly generated using a d6(nDice)
call plus nModifier. The damage is reduced if a save is
successful against the supplied difficulty class nDC. Finally,
the damage is applied to the target as an electrical type
effect.
void ApplyElectricalDamage(
 object oTarget, int nDice = 6,
 int nModifier = 0, int nDC = 14)
{
 // Get the base amount of damage
 int nDamage = d6(nDice) + nModifier;

 // Reduce on a reflex save against DC
 nDamage = GetReflexAdjustedDamage(
 nDamage, oTarget, nDC,
 SAVING_THROW_TYPE_ELECTRICITY);

 // Apply positive damage as an effect
 if (nDamage > 0) {
 effect eDamage = EffectDamage(nDamage,
 DAMAGE_TYPE_ELECTRICAL,
 DAMAGE_POWER_ENERGY);
 ApplyEffectToObject(
 DURATION_TYPE_INSTANT, eDamage,
 oTarget);
 }
}

Moving to the Midpoint Between Objects

The following subroutine causes the creature oCreature to
move to the midpoint between the two placeable objects
passed as arguments. For simplicity it skips any checks for
object validity. To find the midpoint, the positions of the
objects are determined. This will provide a vector to each
object from the area coordinates origin, as shown by V1 and
V2 in the following illustration.

119

Examples

Illustration of the vector math used below

The midpoint between the two objects is then given by
their average value (V4), as shown in the illustration. The
final facing of the creature is set to a direction perpendicular
to the line between the two objects by computing the vector
(V3) between them, then converting the vector to an angle
and adjusting it by 90°.
void MoveToMidpoint(
 object oPlaceable1, object oPlaceable2,
 object oCreature = OBJECT_SELF,
 int bRun = FALSE)
{
 // Vector math
 vector V1 = GetPosition(oPlaceable1);
 vector V2 = GetPosition(oPlaceable2);
 vector V3 = V1 - V2;
 vector V4 = (V1 + V2) / 2.0f;
 float fFace = VectorToAngle(V3) + 90.0f;

 // Get the location of the midpoint vector
 object oArea = GetArea(oCreature);
 location locMidpoint = Location(
 oArea, V4, fFace);

 // Move creature to midpoint
 AssignCommand(oCreature,

 ActionMoveToLocation(
 locMidpoint, bRun));
}

Visual Effect

In the following example, this heartbeat script will create a
small fireball at an Ipoint every 6+1d6 seconds. This uses
the effects referenced by the VFX_... constants. The usable
visual effects can be found in the 'visualeffects.2da' file.
Look for a VFX_... constant in the Label column and then
see if it has a '.sef' file allocated. (Ignore the rows with the
'fx_question_fountain.sef' file.)
void main()
{
 // Create fireball after 1d6 seconds
 effect eEffect = EffectVisualEffect(
 VFX_HIT_AOE_FIRE);
 DelayCommand(IntToFloat(Random(6)),
 ApplyEffectToObject(
 DURATION_TYPE_INSTANT, eEffect,
 OBJECT_SELF));
}

There are a set of special effect files that can be applied at
a location. These have a '.sef' suffix and are located under
the Data\NWN2_VFX... folders in the game's install folder.
The various effects are also available as selections on the
'Appearance (visual effect)' pick for various blueprints, and
are briefly described in the Effects Files chapter of the
second volume. Effects for these effect files can be accessed
using the EffectNWN2SpecialEffectFile call. A sequence of
effects can be strung together by means of DelayCommand
calls with the appropriate durations.

In the following example, a local teleportation effect is
applied to the oTarget's location. The target must undergo a
jump after 1.5f seconds to synchronize with this effect. (See
the JumpPartyToArea command for a group of PCs.)
// Create a teleporation audio/visual effect
void ApplyTeleportEffect(object oTarget)
{
 if (! GetIsObjectValid(oTarget))
 return;

 // Generate the effects
 effect eStart =

120

Examples

 EffectNWN2SpecialEffectFile(
 "fx_ritual_replenish.sef");
 effect eFinish =
 EffectNWN2SpecialEffectFile(
 "fx_teleport_new.sef");
 effect eVanish =
 EffectNWN2SpecialEffectFile(
 "fx_ethereal.sef");

 // Apply effects to the target's location
 location locTarget = GetLocation(
 oTarget);
 ApplyEffectAtLocation(
 DURATION_TYPE_INSTANT,
 eStart, locTarget);
 DelayCommand(0.7f, ApplyEffectAtLocation(
 DURATION_TYPE_INSTANT,
 eFinish, locTarget));
 DelayCommand(1.6f, ApplyEffectToObject(
 DURATION_TYPE_TEMPORARY,
 eVanish, oTarget, 4.0f));
}

Allow Limited Rest

Suppose you only want to allow the party to rest in certain
locations within an area, thereby making recovery of spells
and hit points more challenging. A modified version of the
'x1_playerrest' script, in combination with the trigger tagged
'X0_SAFEREST', can be used to define these safe locations.
First you can make a copy of the 'x1_playerrest' script and
customize it for your module; you could call it, say,
'on_playerrest'. Inside this script is a subroutine called
'NotSafeToRest' that returns true if rest should not be
permitted in most of an area.

In your script copy, the 'NotSafeToRest' routine can be
modified to the following simple form:
int NotSafeToRest(object oPC)
{
 return GetLocalInt(GetArea(oPC),
 "bLimitedRest");
}
After this modified script is placed in the Module's 'On
Player Rest Script' property, the script's 'main' routine will
be called whenever the player attempts to rest. If an area has

the boolean variable 'bLimitedRest' set to 1 in its 'Variables'
property, the 'NotSafeToRest' routine will return 1 and the
script will check the 'NotSafeOnRest' routine to see if the
player is in a safe situation. If the situation is found to be
unsafe, the rest will be aborted and a floating string message
will appear above the PC.

Per the comments for this blueprint, the 'X0_SAFEREST'
trigger must be painted so as to include the safe rest location
plus a door leading into the location. The 'NotSafeOnRest'
routine will then check for the nearest object with the tag
'X0_SAFEREST', which is the safe rest trigger. If the PC is
within the trigger area and the trigger includes a closed
door, then the PC is allowed to rest. Otherwise the rest is
aborted and a message is printed.

Note that this method only works in areas that have the
'No Resting Allowed' property set to false. If this property is
true, the 'On Player Rest Script' is not even run.

Once the safe location is discovered by the player, you
may want a script to mark the safe room with a 'Safe
Waypoint' map note and broadcast a message indicating it is
a safe place to rest.58 This script could, for example, be run
from the trigger's 'On Enter Script' property the first time
the party enters the room. The note will then show up on the
player's map and the party can return to the room wherever
they want to rest. You may even want to set the waypoint
Color property to green as an indication of safety.

Varying daylight sources

If you want interior lights to only be active during the
daylight, you can create a script that will toggle the state of
the light placeables using the SetLightActive() call and
cycle through all the window light sources. If you use light
sources to simulate window illumination, you should give
your lights unique tags so that they can be readily obtained
using GetObjectByTag() calls.

Typically you would call the light variation script from an
interior area's On Client Enter Script property field.
Running the script from the On Heartbeat Script field would
consume more system resources, and besides, suddenly

58 Here's a StrRef for a floating string message: #125778:
"If we shut the door we could rest here safely, I wager."

121

Examples

turning the window lights on or off wouldn't be very
realistic. (Conceivably you could, however, use a group of
multiple lights and transition between them over the course
of the day.)

Item Scripts
The Module properties has a set of fields for event handler

scripts that apply across all areas. Several of these fields
have default scripts that run whenever certain categories of
events occur. Five of these event types are related to items:

Module Event Handler Field Requires Script
On Acquire Item Script x2_mod_def_aqu
On Activate Item Script x2_mod_def_act
On Player Equip Item Script x2_mod_def_equ
On Player Unequip Item Script x2_mod_def_unequ
On Unacquire Item Script x2_mod_def_unaqu

If the listed module scripts are retained in their fields and
one or both of the following switches are set to true in the
'On Module Load Script' script x2_mod_def_load:
MODULE_SWITCH_ENABLE_TAGBASED_SCRIPTS
MODULE_SWITCH_ENABLE_SEPARATE_ITEM_SCRIPTS
then items can have appropriately named scripts that will
process these events for PCs. (Note that these scripts will
not run for NPCs, even if they are members of the party.)
These scripts will be launched whenever the corresponding
module events apply to that item. Thus an item's equip item
script will be run whenever that item is equipped by a PC.

Item scripts allow items to be created that have powers
and behavior that aren't covered by the standard Properties.
There are two methods of naming scripts that will be run
when item events occur.

Tag-based Script

This method allows all of the code related to an item to be
placed in a single script. This script must have the same
name as the item tag, although the script name can be in
lower case. This script should call the following routine
from the x2_inc_switches include file:
int GetUserDefinedItemEventNumber()
This will return one of the X2_ITEM_EVENT_* constants
defined in the same include file. Each applicable event can
then be processed by the script using a switch statement. An
example of such a script is 'x2_it_example'. In addition to
module events, this script can also include checks for

122

Item Scripts

unique power properties of the item.

Note that an item with charges will disappear from the
character's inventory when the last charge is used. However,
this does not cause the On Unacquire Item script or the On
Activate Item script to fire. The same is true of the
DestroyObject function call.

Separate Item Scripts

You can have separate scripts for each of the five module
events. The script names must have a prefix of “i_” (for
item), followed by the item tag, then by a suffix that
depends on the event type. Script templates are available in
the A/C/S panel. Just right-click, select "Add from
Template", followed by the appropriate Item script. Here
are the available item scripts (as described in the Script
Naming Conventions section of the built-in help) for an
item with tag item_tag:

Item script name Executed when...
i_item tag_ac item is activated
i_item_tag_aq item is acquired by party
i_item_tag_ua item is unacquired by party
i_item_tag_eq item is equipped
i_item_tag_ue item is unequipped
i_item_tag_hc weapon item hits target59

i_item_tag_ci spell cast at item

The suffixes are defined by the:
SCRIPT_EXTENSION_ITEM_EVENT_*
constants found in the x2_inc_switches script.

Example

Suppose I want to create a ring that will teleport the party
to an “extradimensional” chamber where they can rest up in
safety? First I create a Ring blueprint and give it the tag
'ring_pocket_plane'. Next, I modify the Item Properties of
the ring to add a 'Cast Spell' property of type 'Unique Power
Self Only'. I select the property and change the CostValue
allow use once each day. This power can now be activated
by right-clicking on the ring, selecting 'Activate Item (Self)'

59 An "_hc" script is run when an item has an "On Hit Cast Spell:
Unique Power (onhit)" Item Property.

and left-clicking a target character, which I will limit to
members of the party via the script.

Now I click the Scripts tab in the A/C/S panel, right-click
to select 'Add From Template' then pick 'Item Activate'. I
rename the resulting script to 'i_ring_pocket_plane_ac'.

In the script I execute a JumpPartyToArea call to transport
the party to chamber. However, I also want to be able to
return to the original location. To do this, the script creates a
unique waypoint at the starting point; taking care to clean
up any old instances first. In the pocket plane I add a door
that will transition the party back to the created unique
waypoint.

123

References

References
• Bioware Aurora Engine, Common Game GFF Structures. Bioware Corp.
• Jackyo123 (2007). Cutscene Tutorial Part 1 – Basic Cutscenes.
• Grimlar. Introduction to Tag Based Scripting.
• Sunjammer (2009). Moveable Placeables.
• Eligio Sacatega (2003). Neverwinter Nights: Custom Content Guide v3.0.
• NWN2 Toolset Beta Testing Community (2006). Neverwinter Nights 2 Toolset: Tips and Tricks.
• Koroush Ghazi. (2009) Neverwinter Nights 2 Tweak Guide: Advanced Tweaking.
• NWN Lexicon.
• Lance Botelle. (2008) NWN2 XML & GUI Coding for Beginners.
• Zarathustra217. Placeable Walkmesh Helper.
• James Hastings-Trew. Reproducing Real World Light. JHT's Planetary Pixel Emporium.
• David Gaider. Scripting Tutorial.
• Nathaniel Chapman (2008). Storm of Zehir Community Tutorial: Overland Map. Obsidian Entertainment.
• Khalidine (2008). Toolset FAQ. Bioware Community.
• Chris O'Sullivan (2008). Toolset Manual, version 1.5.
• Sunjammer (2007). World Map Guide v1.01.

124

http://planetpixelemporium.com/tutorialpages/light.html

Revision History

Revision History
Date Version Description

05/25/2009 1.0 Initial version.

06/03/2009 1.1 Light/shadow exception; more properties documented; applied suggested fixes and additions;
included internal hyperlinks to chapters and sections.

06/13/2009 1.2 Minor copy edits for flow; added a plug-ins section; included layout/camouflage suggestions for
interior areas; door transition; corrections.

12/07/2009 4th ed. Many small copy edits for clarity. Additions for allowing limited rest, viewing animations, scaling
doors, making a concealed passage, adding gold pieces to containers and combining effects for
producing realistic light sources. Included additional remarks on stores.

07/28/2010 5th ed. Additions for crafting items, recipe books, the World Map Editor and special abilities. More
information on lights, sounds, creature scripts, the debugging console, and area appearance.

09/22/2011 6th ed. Additions for intelligent weapons, lights, special abilities, overland map, and trees. Merged custom
items section into special abilities. Reorganized the magic item lists. Extensive editing. More
example scripts.

09/01/2013 6.1 ed. Removed incorrect paragraph about scaling doors; added more sample scripts; added a short section
about one-liners.

125

	Interface
	Menus
	File menu
	Edit menu
	View menu
	Plugins menu
	Help menu

	Toolbars
	Panels
	A/C/S Panel
	Area Contents Panel
	Verify Panel
	Edit Panel
	Properties Panel
	Selection Panel

	Patching

	Creating a Game
	Environment
	Quests
	Testing
	Credits
	Modules
	Properties
	Misc
	Scripts
	Starting Area
	Time

	Areas
	Editing
	Properties
	Appearance
	Environment
	Fog
	General
	OverlandMap
	Scripts
	Sound
	Weather

	Objects
	Selecting Placed Objects
	Translation and Rotation
	Modifying Object Properties

	Exterior Areas
	Terrain Tool
	Terrain editing
	Structures
	Walkmesh

	Texturing Tool
	Color

	Water Tool
	Grass Tool
	Objects
	Docks and Bridges
	Walkmesh Helper

	Day/Night Cycle Stages

	Interior Areas
	Tiles
	Tile Properties
	Appearance
	Misc

	Layout
	Objects
	Water

	Blueprints
	Items
	Properties
	Appearance
	Armor
	Basics
	Behavior
	Misc
	Scripts

	Base Item
	Appearance
	Armor Set
	Masterwork Items
	Magic Items
	Intelligent Weapon
	Cursed Items

	Example
	Staff of Light

	Creatures
	Appearance Wizard
	First Panel
	Second Panel
	Third Panel

	Properties
	Properties
	Appearance
	Basics
	Behavior
	Character Sheet
	Scripts

	Inventory
	Basics
	Commoners

	Statistics
	Feats Tab
	Skills
	Special Abilities

	Options
	Custom Behavior
	Standard 'On Spawn In Script'
	User Events

	Visual Effects
	Alternate Uses

	Doors
	Placement
	Properties
	Appearance
	Basics
	Behavior
	Lock
	Misc
	Scripts
	Statistics
	Transition
	Trap

	Transition
	Secret Doors

	Stores
	Properties
	Basics
	Behavior
	Scripts

	Store Tab
	Creating a Store
	Examples

	Placeables
	Properties
	Appearance
	Basics
	Behavior
	Lock
	Misc
	Saving Throws
	Scripts
	Statistics
	Trap

	Toolset Collections
	Crafting Items
	Miscellaneous
	Collision Ball and Box
	Ipoint
	Gold Pieces
	Lever, Useable
	Secret Object
	Concealed Passage
	Walkmesh Helper

	On Used Scripts

	Triggers
	Properties
	Appearance
	Basics
	Lock
	Scripts
	Transition
	Trap

	Blueprints

	Encounters
	Properties
	Basics
	Behavior
	Scripts

	Sounds
	Properties
	Basics
	Behavior
	Scripts

	Waypoints
	Properties
	Appearance
	Basics
	Behavior
	Scripts

	Types
	Ambient Animations
	Map Notes
	Post
	Walk Path

	Static Cameras
	Properties
	Basics
	Scripts

	Lights
	Properties
	Appearance
	Basics
	Behavior
	Scripts

	Sample Light Sources
	Windows and Curtains
	Example

	Trees
	Properties
	Appearance
	Basics

	Seasonal trees

	Placed Effects
	Properties
	Basics
	Behavior

	Portals
	Example

	Prefabs
	Properties
	Basics
	General
	Misc

	Conversations
	Properties
	Behavior
	Comments
	Scripts
	Voiceover

	Editing
	Links
	Text Input
	Font Format

	Tabs
	Conditions
	Actions
	Node
	Behavior
	Line
	Multiple Conversations
	Camera Shots

	Animations
	Blurt Strings
	Intelligent Weapon Conversation
	One-liner Messages
	Custom Condition Script
	Interactive Conversations

	Tools
	Journal
	World Map Editor
	Black Map Image

	Overland Map
	Plugins
	The Grinning Fool's Creature Creator
	InCharacter
	Lazjen's CPS Inventory Manager (CPSIM)
	PowerBar
	SpellPlug
	Incompatible Plugins

	Writing Scripts
	Editing
	Variables
	Basic Types
	Structured Types
	Initialization

	Constants
	Flow Control
	Compiling

	Debugging
	Commands
	Script Messages
	Script Debugger

	Examples
	First-Next Pairs
	Inflict Lightning Damage
	Moving to the Midpoint Between Objects
	Visual Effect
	Allow Limited Rest
	Varying daylight sources

	Item Scripts
	Tag-based Script
	Separate Item Scripts
	Example

	References
	Revision History

